Skip to main content

Advertisement

Log in

Role of cancer cell-stroma interaction in invasive growth of cancer cells

  • Review
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Invasive growth is one of the hallmarks of cancer malignancy. To date, a significant body of evidence is accumulating in favor of the notion that invasive growth results from the cross-talk between cancer cells and the host stromal cells, comprising fibroblasts (myofibroblasts), endothelial cells, and leukocytes, all of which are themselves invasive. In this review we describe cross-talk between invasive cancer cells and host stromal fibroblasts and an impact of pericellular microenvironment on the invasive phenotype of cancer cells, focusing on two molecules, extracellular matrix metalloproteinase inducer (EMMPRIN, also known as tumor cell-derived collagenase stimulatoty factor, basigin, CD147) and hepatocyte growth factor (HGF, also known as scatter factor). Both molecules are deeply involved in the regulation of invasion-associated cellular activities, such as pencellular proteolysis, migration and ectopic sunrival of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dvorak, HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med., 315: 1650–1659, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Liotta LA, Kohn EC: The microenvironment of the tumour-host interface. Nature, 411: 375–379, 2001

    Article  PubMed  CAS  Google Scholar 

  3. Trusolino L, Comoglio PM: Scatter-factor and semaphoring receptors: Cell signaling for invasive growth. Nat. Rev. Cancer, 2: 289–300, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Vihnen P, Kahari VM: Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. Int. J. Cancer, 99: 157–166, 2002.

    Article  Google Scholar 

  5. Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 17: 463–516, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Kataoka H, Uchino H, Iwamura T, et al Enhanced tumor growth and invasiveness in vivo by a carboxy-terminal fragment of α1-proteinase inhibitor generated by matrix metalloproteinase: A possible modulatory role in natural killer cytotoxicity. Am. J. Pathol., 154: 457–468, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Basset P, Bellocq JP, Wolf C, et al: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature, 348: 699–704, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Toole BP: Emmprin (CD 147), a cell surface regulator of matrix metalloproteinase production and function. Curr Top Dev Biol., 54: 371–389, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Ellis SM, Nabeshima K, Biswas C: Monoclonal antibody preparation and purification of a tumor cell collagenase stimulatory factor. Cancer Res., 49: 3385–3391, 1989.

    PubMed  CAS  Google Scholar 

  10. Kataoka H, DeCastro R, Zucker S, et al: Tumor cell-derived collagenase-stimulatory factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res., 53: 3154–3158, 1993.

    PubMed  CAS  Google Scholar 

  11. Guo H, Zucker S, Gordon MK, et al: Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J. Biol. Chem., 272: 24–27, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Biswas C, Zhang Y, DeCastro R, et al: The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res., 55: 434–439, 1995.

    PubMed  CAS  Google Scholar 

  13. Sameshima T, Nabeshima K., Toole BP: Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett., 157: 177–184, 2000.

    Article  PubMed  CAS  Google Scholar 

  14. McDonnell S, Navre M, Coffey RJ Jr, et al: Expression and localization of the matrix metalloproteinase Pump-1 (MMP-7) in human gastric and colon carcinomas. Mol. Carcinog., 4: 527–533, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson CL, Heppner KJ, Labosky PA, et al: Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl. Acad. Sci. USA, 94: 1402–1407, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Kataoka H, Meng JY, Uchino H, et al: Modulation of matrix metalloproteinase-7 (matrilysin) secretion in coculture of human colon carcinoma cells with fibroblasts from orthotopic and ectopic organs. Oncol. Res., 9: 101–109, 1997.

    PubMed  CAS  Google Scholar 

  17. Andreasen PA, Kjoller L, Christensen L, et al: The urokinase-type plasminogen activator system in cancer metastasis: A review). Int. J. Cancer, 72: 1–22, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Miyauchi T, Masuzawa Y, Muramatsu T: The basigin group of the immunoglobulin superfamily: complete conservation of a segment in and around transmembrane domains of human and mouse basigin and chicken HT7 antigen. J. Biochem., 110: 770–774, 1991.

    PubMed  CAS  Google Scholar 

  19. Kasinrerk W, Fiebiger E, Stefanova I, et al: Human leukocyte activation antigen M6, a member of the Ig superfamily, is the species homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J. Immunol., 149: 847–854, 1992.

    PubMed  CAS  Google Scholar 

  20. Davidson B, Goldberg I, Berner A, et al: EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin. Exp. Metast., 20: 161–169, 2003.

    Article  CAS  Google Scholar 

  21. Zucker S, Hymowitz M, Rollo EE, et al: Tumorigenic potential of extracellular matrix metalloproteinase inducer. Am J. Pathol., 158: 1921–1928, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Klein CA, Seidl S, Petat-Dutter K, et al: Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol., 20: 387–392, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Sun J, Hemler ME: Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res., 61: 2276–2281, 2001.

    PubMed  CAS  Google Scholar 

  24. Lim M, Martinez T, Jablons D, et al: Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett., 441: 88–92, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Tayler PM, Woodfield RJ, Hodgkin MN, et al: Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP-2 release through a phospholipase A2 and 5-lipoxygenase catalyzed pathway. Oncogene, 21: 5765–5772, 2002.

    Article  Google Scholar 

  26. Guo H, Li R, Zucker S, et al: EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res., 60: 888–891, 2000.

    PubMed  CAS  Google Scholar 

  27. Gohda E, Tsubouchi H, Nakayama H, et al: Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J. Clin. Invest., 81: 414–419, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura T, Nawa K, Ichihara A, et al: Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett., 224: 311–316, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Weidner KM, Arakaki N, Hartmann G, et al: Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc. Natl. Acad. Sci. USA, 88: 7001–7005, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Naldini L, Weidner KM, Vigna E, et al: Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBOJ., 10: 2867–2878, 1991.

    CAS  Google Scholar 

  31. Moriyama T, Kataoka H, Seguchi K, et al: Effects of hepatocyte growth factor (HGF) on human glioma cells in vitro: HGF acts as a motility factor in glioma cells. Int. J. Cancer, 66: 678–685, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Uchiyama A, Essen R, Doi F Interleukin 4 inhibits hepatocyte growth factor-induced invasion and migration of colon carcinomas. J. Cell Biochem., 62: 443–453, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. Hamasuna R, Kataoka H, Moriyama T, et al: Regulation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying upregulatian of membrane type-1 MMP. Int. J. Cancer, 82: 274–281, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Nabeshma K, Inoue T, Shimao Y, et al: Front-cell-specific expression of membrane-type 1 matrix metalloproteinase and gelatinase A during cohort migration of colon carcinoma cells induced by hepatocyte growth factor/scatter factor. Cancer Res., 60: 3364–3369, 2000.

    Google Scholar 

  35. Bellusci S, Moens G, Gaudino G, et al: Creation of a hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene, 9: 1091–1099, 1994.

    PubMed  CAS  Google Scholar 

  36. Rong S, Segal S, Anver M, et al: Invasiveness and metastasis of NIH3T3 cells induced by Methepatocyte growth factor / scatter factor autocrine stimulation. Proc. Natl. Acad. Sci. USA., 91: 4731–4735, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Bussolina F, DiRenzo MF, Ziche M, et al: Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. CellBiol., 119: 629–641, 1992.

    Article  Google Scholar 

  38. Lamszus K, Jin L, Fuchs A, et al: Scatter factor stimulates tumor growth and tumor angiogenesis in human breast cancers in the mammary fat pad of nude mice. Lab. Invest., 76: 339–353, 1997.

    PubMed  CAS  Google Scholar 

  39. Moriyama T, Kataoka H, Hamasuna R, et al: Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem. Biophys. Res. Commun., 249: 73–77, 1998.

    Article  PubMed  CAS  Google Scholar 

  40. Bowers DC, Fan S, Walter KA, et al: Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase-and AKT-dependent pathways. Cancer Res., 60: 4277–4283, 2000.

    PubMed  CAS  Google Scholar 

  41. Schmidt L, Duh FM, Chen F, et al: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Gen., 16: 68–73, 1997.

    Article  CAS  Google Scholar 

  42. Abounader R, Ranganathan S, Lal B, et al: Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J. Natl. Cancer Inst., 91: 1548–1556, 1999.

    Article  PubMed  CAS  Google Scholar 

  43. Nakamura T, Matsumoto K, Kiritoshi A, et al: Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res., 57: 3305–3313, 1997.

    PubMed  CAS  Google Scholar 

  44. Ferracini R, DiRenzo MF, Scotlandi K, et al: The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene, 10: 739–749, 1995.

    PubMed  CAS  Google Scholar 

  45. Rahimi N, Tremblay E, McAdam L, et al: Identification of a hepatocyte growth factor autocrine loop in a murine mammary carcinoma. Cell Growth Dig, 7: 263–270, 1996.

    CAS  Google Scholar 

  46. Naka D, Ishii T, Yoshiyama Y, et al: Activation of hepatocyte growth factor by proteolytic conversion of single chain form to a heterodimer. J. Biol. Chem., 267: 20114–20119, 1992.

    PubMed  CAS  Google Scholar 

  47. Naldini L, Tamagnone L, Vigna E, et al: Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J., 11: 4825–4833, 1992.

    PubMed  CAS  Google Scholar 

  48. Miyazawa K, Shimomura T, Naka D, Kitamura N: Proteolytic activation of hepatocyte growth factor in response to tissue injury. J. Biol. Chem., 269: 8966–8970, 1994.

    PubMed  CAS  Google Scholar 

  49. Mars WM, Zarnegar R, Michalopoulos GK: Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am. J. Pathol., 143: 949–958, 1993.

    PubMed  CAS  Google Scholar 

  50. Mizuno K, Takehara T, Nakamura T, et al: Proteolytic activation of a single-chain precursor of hepatocyte growth factor by extracellular serine-protease. Biochem. Biophys. Res. Commun., 189: 1631–1638, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Naldini L, Vigna E, Bardelli A, et al: Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J. Biol. Chem., 270: 603–611, 1995.

    Article  PubMed  CAS  Google Scholar 

  52. Shimomura T, Ochiai M, Kondo J, et al: A novel protease obtained from FBS-containing culture supernatant, that processes single-chain form hepatocyte growth factor to two chain form in serum-free culture. Cytotechnology, 8: 219–229, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Miyazawa K, Shimomura T, Kitamura A, et al: Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. J. Biol. Chem., 268: 10024–10028, 1993.

    PubMed  CAS  Google Scholar 

  54. Shimomura T, Miyazawa K, Komiyama Y, et al: Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor XIIa and hepatocyte growth factor activator. Eur. J. Biochem., 229: 257–261, 1995.

    Article  PubMed  CAS  Google Scholar 

  55. Peek M, Moran P, Mendoza N, et al: Unusual proteolytic activation of pro-hepatocyte growth factor by plasma kallikrein and coagulation factor XIa. J. Biol. Chem., 277: 47804–47809, 2002.

    Article  PubMed  CAS  Google Scholar 

  56. Lee SL, Dickson RB, Lin CY: Activation of hepatocyte growth factor and urokinase/ plasminogen activator by matriptase, and epithelial membrane serine protease. J. Biol. Chem., 275: 36720–36725, 2000.

    Article  PubMed  CAS  Google Scholar 

  57. Matsubara Y, Ichinose M, Yahagi N, et al: Hepatocyte growth factor activator: A possible regulator of morphogenesis during fetal development of the rat gastrointestinal tract. Biochem. Biophys. Res. Commun., 253: 477–484, 1998.

    Article  CAS  Google Scholar 

  58. Itoh H, Hamasuna R, Kataoka H, et al: Mouse hepatocyte growth factor activator gene: its expression not only in the liver but also in the gastrointestinal tract. Biochim. Biophys. Acta, 1491: 295–302, 2000.

    Article  PubMed  CAS  Google Scholar 

  59. van Adelsberg JS, Sehgal S, Kukes A, et al: Activation of HGF by endogenous HGF activator is required for metanephric kidney morphogenesis in vitro. J. Biol. Chem., 276: 15099–15106 (2001).

    Article  PubMed  Google Scholar 

  60. Hayashi T, Abe K, Sakurai M, et al: Inductions of hepatocyte growth factor and its activator in rat brain with permanent middle cerebral artery occlusion. Brain Res., 799: 311–316, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. Yamazaki M, Tsuboi R, Lee YR, et al: Hair cycle-dependent expression of hepatocyte growth factor (HGF) activator, other proteinases, and proteinase inhibitors correlates with the expression of HGF in rat hair follicles. J. Investig. Dermatol. Sym. Proc. 4: 312–315, 1999.

    Article  CAS  Google Scholar 

  62. Yamauchi M, Itoh H, Naganuma S, et al: Expression of hepatocyte growth factor activator inhibitor type 2 (HAI-2) in human testis: Identification of a distinct transcription start site for the HAI-2 gene in testis. Biol. Chem., 383: 1953–1957, 2002.

    Article  PubMed  CAS  Google Scholar 

  63. Moriyama T, Kataoka H, Tsubouchi H, Koono, M. Concomitant expression of hepatocyte growth factor (HGF), HGF activator and c-met genes in human glioma cells in vitro. FEBS Lett., 372: 78–82, 1995.

    Article  PubMed  CAS  Google Scholar 

  64. Kataoka H, Hamasuna R, Itoh H, et al: Activation of hepatocyte growth factor/scatter factor in colorectal carcinoma. Cancer Res., 60: 6148–6159, 2000.

    PubMed  CAS  Google Scholar 

  65. Nagata K, Hirono S, Kataoka H, et al: Expression of hepatocyte growth factor activator and hepatocyte growth factor activator inhibitor type 1 in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 289: 205–211, 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Miyazawa K, Wang Y, Minoshima S, et al: Structural organization and chromosomal localization of the human hepatocyte growth factor activator gene. Eur. J. Biochem., 258: 355–361, 1998.

    Article  PubMed  CAS  Google Scholar 

  67. Shimomura T, Kondo J, Ochiai M, et al: Activation of the zymogen of hepatocyte growth factor activator by thrombin. J. Biol. Chem., 268: 22927–22932, 1993.

    PubMed  CAS  Google Scholar 

  68. Miyazawa K, Shimomura T, Kitamura N: Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J. Biol. Chem., 271: 3615–3618, 1996.

    Article  PubMed  CAS  Google Scholar 

  69. Kataoka H, Uchino H, Asada Y, et al: Analysis of tissue factor and tissue factor pathway inhibitor expression in human colorectal carcinoma cell lines and metastatic sublines to the liver. Int. J. Cancer, 72: 878–884, 1997.

    Article  PubMed  CAS  Google Scholar 

  70. Kataoka H, Itoh H, Hamasuna R et al: Pericellular activation of hepatocyte growth factor/scatter factor (HGF/SF) in colorectal carcinomas: Roles of HGF activator (HGFA) and HGFA inhibitor type 1 (HAI-1). Hum. Cell, 14: 83–93, 2001.

    PubMed  CAS  Google Scholar 

  71. Kataoka H, Miyata S, Uchinokura S, et al: Roles of hepatocyte growth factor (HGF) activator and HGF activator inhibitor in the pericellular activation of HGF/scatter factor. Cancer Metast. Rev., 22: 223–236, 2003.

    Article  CAS  Google Scholar 

  72. Takeuchi T, Harris JL, Huang W, et al: Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J. Biol. Chem., 275: 26333–26342, 2000

    Article  PubMed  CAS  Google Scholar 

  73. Oberst M, Anders J, Xie B, et al: Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am. J. Pathol., 158: 1301–1311, 2001

    Article  PubMed  CAS  Google Scholar 

  74. Oberst MD, Johnson MD, Dickson RB, et al: Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: Correlation with clinical outcome and tumor clinicopathological parameters. Clin. Cancer Res., 8: 1101–1107, 2002.

    PubMed  CAS  Google Scholar 

  75. Lin CY, Anders J, Johnson M, et al: Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J. Biol. Chem., 274: 18231–18236, 1999

    Article  PubMed  CAS  Google Scholar 

  76. Ihara S, Miyoshi E, KO JH, et al: Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding α1-6GlcNAc branching. J. Biol. Chem., 277: 16960–16967, 2002

    Article  PubMed  CAS  Google Scholar 

  77. Shimomura T, Denda K, Kitamura A, et al: Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J. Biol. Chem., 272: 6370–6376, 1997.

    Article  PubMed  CAS  Google Scholar 

  78. Kawaguchi T, Qin L, Shimomura T, et al: Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J. Biol. Chem., 272, 27558–27564, 1997.

    Article  PubMed  CAS  Google Scholar 

  79. Lin CY, Anders J, Johnson M, et al: Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J. Biol. Chem., 274: 18237–18242, 1999.

    Article  PubMed  CAS  Google Scholar 

  80. Kataoka H, Itoh H, Shimomura T, et al: Regulation of hepatocyte growth factor (HGF) activation on cell surface: Insights into an emerging class of cell surface protease inhibitors. Int. Archiv Cell Biol., 1: 1036–1042, 2001.

    Google Scholar 

  81. Itoh H, Yamauchi M, Kataoka H, et al: Genomic structure and chromosomal localization of the human hepatocyte growth factor activator inhibitor type 1 and 2 genes. Eur. J. Biochem., 267: 3351–3359, 2000.

    Article  PubMed  CAS  Google Scholar 

  82. Kataoka H, Shimomura T, Kawaguchi T, et al: Hepatocyte growth factor activator inhibitor type 1 is a specific cell surface binding protein of hepatocyte growth factor activator (HGFA) and regulates HGFA activity in the pericellular microenvironment. J. Biol. Chem., 275: 40453–40462, 2000.

    Article  PubMed  CAS  Google Scholar 

  83. Kataoka H, Suganuma T, Shimomura T, et al: Distribution of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in human tissues: Cellular surface localization of HAI-1 in simple columnar epithelium and its modulated expression in injured and regenerative tissues. J. Histochem. Cytochem., 47: 673–682, 1999.

    Article  PubMed  CAS  Google Scholar 

  84. Kataoka H, Uchino H, Denda K, et al: Evaluation of hepatocyte growth factor activator inhibitor expression in normal and malignant colonic mucosa. Cancer htt., 128: 219–227, 1998.

    CAS  Google Scholar 

  85. Kataoka H, Meng JY, Itoh H, et al: Localization of hepatocyte growth factor activator inhibitor type 1 in Langhans’ cells of human placenta. Histochem. Cell Biol., 114: 469–475, 2000.

    PubMed  CAS  Google Scholar 

  86. Itoh H, Kataoka H, Tomita M, et al: Up-regulation of hepatocyte growth factor activator inhibitor type-1 but not type-2 along with regeneration of intestinal mucosa. Am. J. Physiol., 278: G635-G643, 2000.

    CAS  Google Scholar 

  87. Itoh H, Kataoka H, Meng JY, et al: Mouse hepatocyte growth factor activator inhibitor type 1 (HAI-1) and type 2 (HAI-2)/placental bikunin genes and their promoters. Biochim. Biophys. Acta 1519: 92–95, 2001.

    Article  PubMed  CAS  Google Scholar 

  88. Shimomura T, Denda K, Kawaguchi T, et al: Multiple sites of proteolytic cleavage to release soluble forms of hepatocyte growth factor activator inhibitor type 1 from a transmembrane form. J. Biochem., 126: 821–828, 1999.

    Article  PubMed  CAS  Google Scholar 

  89. Denda K, Shimomura T, Kawaguchi T, et al: Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 1. J. Biol. Chem., 277: 14053–14059, 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kataoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, H., Tanaka, H., Nagaike, K. et al. Role of cancer cell-stroma interaction in invasive growth of cancer cells. Hum Cell 16, 1–14 (2003). https://doi.org/10.1111/j.1749-0774.2003.tb00123.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1749-0774.2003.tb00123.x

Key words

Navigation