Skip to main content

Advertisement

Log in

Photochemically enhanced adenoviral transduction in a multicellular environment

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochemical internalization (PCI) enhances adenovirus (Ad) transgene expression in a variety of cell lines in vitro. However, measurements of the photochemical effect on transduction in multicellular environments are lacking. In this study, spheroids of DU 145 prostate cancer cells were used as a model to evaluate Ad serotype 5 (Ad5) transduction in a multicellular environment in response to PCI treatment. Furthermore, the Ad5 was coated with poly(2-methyl-acrylic acid 2-[(2-(dimethylamino)-ethyl)-methyl-amino]-ethyl ester) (pDAMA) to evaluate whether physicochemical properties such as charge and size of viral vectors affect transduction of photochemically treated spheroids.

Spheroids incubated with photosensitizer TPPS2a (1 µg ml−1) and infected with adenovirus contained 3-fold higher percentage of reporter gene expressing cells after exposure to blue light (0.42 J cm−2) compared to no light, as analysed by flow cytometry of dissociated spheroids two days after treatment. The cells within the infected spheroids were further divided into three sections corresponding to the interior, intermediate and peripheral layers of the spheroids. This was performed by staining the spheroids with a diffusion-limited dye prior to dissociation. Transduction of cells within photochemically treated and untreated spheroids was heterogeneous, with a radial reduction of transgene expression towards the inner section of the spheroid. The coating of Ad with pDAMA induced up to 2-fold decrease in transduction of cells in the interior section of spheroids compared to uncomplexed Ad, while transduction of the peripheral section remained unchanged. The decrease in transduction could be related to reduced diffusion due to the size of the Ad—pDAMA complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Berg, P. K. Selbo, L. Prasmickaite, T. E. Tjelle, K. Sandvig, J. Moan, G. Gaudernack, O. Fodstad, S. Kjølsrud, H. Anholt, G. H. Rodal, S. K. Rodal, A. Høgset, Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 1999, 59, 1180–1183.

    CAS  PubMed  Google Scholar 

  2. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1992, 55, 145–157.

    Article  CAS  PubMed  Google Scholar 

  3. K. Berg and J. Moan, Lysosomes as photochemical targets, Int. J. Cancer, 1994, 59, 814–822.

    Article  CAS  PubMed  Google Scholar 

  4. A. Høgset, L. Prasmickaite, T. E. Tjelle and K. Berg, Photochemical transfection: a new technology for light-induced, site-directed gene delivery, Hum. Gene Ther., 2000, 11, 869–880.

    Article  PubMed  Google Scholar 

  5. A. Høgset, B. Ø. Engesæter, L. Prasmickaite, K. Berg, O. Fodstad, G. M. Mælandsmo, Light-induced adenovirus gene transfer, an efficient and specific gene delivery technology for cancer gene therapy, Cancer Gene Ther., 2002, 9, 365–371.

    Article  PubMed  Google Scholar 

  6. A. Bonsted, A. Høgset, F. Hoover and K. Berg, Photochemical enhancement of gene delivery to glioblastoma cells is dependent on the vector applied, Anticancer Res., 2005, 25, 291–297.

    CAS  PubMed  Google Scholar 

  7. L. Prasmickaite, A. Høgset, B. Ø. Engesæter, A. Bonsted and K. Berg, Light-directed gene delivery by photochemical internalisation, Expert Opin. Biol. Ther., 2004, 4, 1403–1412.

    Article  CAS  PubMed  Google Scholar 

  8. B. Ø. Engesæter, S. Tveito, A. Bonsted, O. Engebraaten, K. Berg, G. M. Mælandsmo, Photochemical treatment with endosomally localized photosensitizers enhances the number of adenoviruses in the nucleus, J. Gene Med., 2006, in press.

    Google Scholar 

  9. R. Tomanin and M. Scarpa, Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction, Curr. Gene Ther., 2004, 4, 357–372.

    Article  CAS  PubMed  Google Scholar 

  10. U. F. Greber, M. Willetts, P. Webster and A. Helenius, Stepwise dismantling of adenovirus 2 during entry into cells, Cell, 1993, 75, 477–486.

    Article  CAS  PubMed  Google Scholar 

  11. P. L. Leopold, B. Ferris, I. Grinberg, S. Worgall, N. R. Hackett and R. G. Crystal, Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells, Hum. Gene Ther., 1998, 9, 367–378.

    Article  CAS  PubMed  Google Scholar 

  12. B. Ø. Engesæter, A. Bonsted, K. Berg, A. Høgset, O. Engebraten, O. Fodstad, D. T. Curiel, G. M. Mælansdmo, PCI-enhanced adenoviral transduction employs the known uptake mechanism of adenoviral particles, Cancer Gene Ther., 2005, 12, 439–448.

    Article  PubMed  CAS  Google Scholar 

  13. R. M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model, Science, 1988, 240, 177–184.

    Article  CAS  PubMed  Google Scholar 

  14. N. S. Waleh, J. Gallo, T. D. Grant, B. J. Murphy, R. H. Kramer and R. M. Sutherland, Selective down-regulation of integrin receptors in spheroids of squamous cell carcinoma, Cancer Res., 1994, 54, 838–843.

    CAS  PubMed  Google Scholar 

  15. T. Nederman, B. Norling, B. Glimelius, J. Carlsson and U. Brunk, Demonstration of an extracellular matrix in multicellular tumor spheroids, Cancer Res., 1984, 44, 3090–3097.

    CAS  PubMed  Google Scholar 

  16. A. Fasbender, J. Zabner, M. Chillon, T. O. Moninger, A. P. Puga, B. L. Davidson and M. J. Welsh, Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo, J. Biol. Chem., 1997, 272, 6479–6489.

    Article  CAS  PubMed  Google Scholar 

  17. J. M. Kaplan, S. E. St Pennington, J. A. George, L. A. Woodworth, A. Fasbender, J. Marshall, S. H. Cheng, S. C. Wadsworth, R. J. Gregory and A. E. Smith, Potentiation of gene transfer to the mouse lung by complexes of adenovirus vector and polycations improves therapeutic potential, Hum. Gene Ther., 1998, 9, 1469–1479.

    Article  CAS  PubMed  Google Scholar 

  18. E. Dodds, T. A. Piper, S. J. Murphy and G. Dickson, Cationic lipids and polymers are able to enhance adenoviral infection of cultured mouse myotubes, J. Neurochem., 1999, 72, 2105–2112.

    Article  CAS  PubMed  Google Scholar 

  19. A. Bonsted, B. Ø. Engesæter, A. Høgset, G. M. Mælandsmo, L. Prasmickaite, O. Kaalhus and K. Berg, Transgene expression is increased by photochemically mediated transduction of polycation-complexed adenoviruses, Gene Ther., 2004, 11, 152–160.

    Article  CAS  PubMed  Google Scholar 

  20. A. Bonsted, B. Ø. Engesæter, A. Høgset, G. M. Mælandsmo, L. Prasmickaite, C. D’Oliveira, W. E. Hennink, J. H. van Steenis and K. Berg, Photochemically enhanced transduction of polymer-complexed adenovirus targeted to the epidermal growth factor receptor, J. Gene Med., 2005, 8, 286–297.

    Article  CAS  Google Scholar 

  21. H. E. Davis, M. Rosinski, J. R. Morgan and M. L. Yarmush, Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation, Biophys. J., 2004, 86, 1234–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R. K. Jain, Transport of molecules in the tumor interstitium: a review, Cancer Res., 1987, 47, 3039–3051.

    CAS  PubMed  Google Scholar 

  23. L. A. Wenning and R. M. Murphy, Coupled cellular trafficking and diffusional limitations in delivery of immunotoxins to multicell tumor spheroids, Biotechnol. Bioeng., 1999, 62, 562–575.

    Article  CAS  PubMed  Google Scholar 

  24. G. Fracasso and M. Colombatti, Effect of therapeutic macromolecules in spheroids, Crit. Rev. Oncol. Hematol., 2000, 36, 159–178.

    Article  CAS  PubMed  Google Scholar 

  25. B. Ríhová, J. Strohalm, J. Prausova, K. Kubackova, M. Jelinkova, L. Rozprimova, M. Sirova, D. Plocova, T. Etrych, V. Subr, T. Mrkvan, M. Kovar and K. Ulbrich, Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data, J. Controlled Release, 2003, 91, 1–16.

    Article  CAS  Google Scholar 

  26. R. R. Palmer, A. L. Lewis, L. C. Kirkwood, S. F. Rose, A. W. Lloyd, T. A. Vick and P. W. Stratford, Biological evaluation and drug delivery application of cationically modified phospholipid polymers, Biomaterials, 2004, 25, 4785–4796.

    Article  CAS  PubMed  Google Scholar 

  27. A. M. Funhoff, C. F. van Nostrum, G. A. Koning, N. M. Schuurmans-Nieuwenbroek, D. J. Crommelin and W. E. Hennink, Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH, Biomacromolecules, 2004, 5, 32–39.

    Article  CAS  PubMed  Google Scholar 

  28. J. Y. Cherng, P. van de Wetering, H. Talsma, D. J. Crommelin and W. E. Hennink, Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles, Pharm. Res., 1996, 13, 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  29. M. Hitt, A. J. Bett, C. L. Addison, L. Prevec and F. L. Graham, Techniques for human adenovirus vector construction and characterization In Methods in Molecular Genetics, ed. K. W. Adolph, Academic Press, New York, 1995, pp. 13–30.

    Google Scholar 

  30. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  31. R. E. Durand, Use of Hoechst 33342 for cell selection from multicell systems, J. Histochem. Cytochem., 1982, 30, 117–122.

    Article  CAS  PubMed  Google Scholar 

  32. P. J. Canatella, M. M. Black, D. M. Bonnichsen, C. McKenna and M. R. Prausnitz, Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments, Biophys. J., 2004, 86, 3260–3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. P. Winsor, The Gompertz curve as a growth curve, Proc. Natl. Acad. Sci. U. S. A., 1932, 18, 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L. Prasmickaite, A. Høgset, P. K. Selbo, B. Ø. Engesæter, M. Hellum and K. Berg, Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy, Br. J. Cancer, 2002, 86, 652–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. T. Bouvier, M. Troussellier, A. Anzil, C. Courties and P. Servais, Using light scatter signal to estimate bacterial biovolume by flow cytometry, Cytometry, 2001, 44, 188–194.

    Article  CAS  PubMed  Google Scholar 

  36. H. M. Shapiro, Practical flow cytometry, Wiley-Liss, New York, 4th edn, 2003.

    Book  Google Scholar 

  37. M. Essand, C. Gronvik, T. Hartman and J. Carlsson, Radioimmunotherapy of prostatic adenocarcinomas: effects of 131I-labelled E4 antibodies on cells at different depth in DU 145 spheroids, Int. J. Cancer, 1995, 63, 387–394.

    Article  CAS  PubMed  Google Scholar 

  38. P. J. Canatella, J. F. Karr, J. A. Petros and M. R. Prausnitz, Quantitative study of electroporation-mediated molecular uptake and cell viability, Biophys. J., 2001, 80, 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. C. M. West and J. V. Moore, Flow cytometric analysis of intracellular hematoporphyrin derivative in human tumor cells and multicellular spheroids, Photochem. Photobiol., 1989, 50, 665–669.

    Article  CAS  PubMed  Google Scholar 

  40. M. Juweid, R. Neumann, C. Paik, M. J. Perez-Bacete, J. Sato, W. van Osdol and J. N. Weinstein, Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier, Cancer Res., 1992, 52, 5144–5153.

    CAS  PubMed  Google Scholar 

  41. J. Moan, K. Berg and V. Iani, Action spectra of dyes relevant for photodynamic therapy, in Photodynamic Tumor Therapy, ed. J. G. Moser, Harwood Publishers, London, 1998, pp. 169–181.

    Google Scholar 

  42. M. G. Nichols and T. H. Foster, Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids, Phys. Med. Biol., 1994, 39, 2161–2181.

    Article  CAS  PubMed  Google Scholar 

  43. A. M. Funhoff, C. F. van Nostrum, M. C. Lok, J. A. Kruijtzer, D. J. Crommelin and W. E. Hennink, Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors, J. Controlled Release, 2005, 101, 233–246.

    Article  CAS  Google Scholar 

  44. H. R. Shen, J. D. Spikes, P. Kopecekova and J. Kopecek, Photodynamic crosslinking of proteins. I. Model studies using histidine- and lysine-containing N-(2-hydroxypropyl)methacrylamide copolymers, J. Photochem. Photobiol., 1996, 34, 203–210.

    Article  CAS  Google Scholar 

  45. P. K. Selbo, G. Sivam, O. Fodstad, K. Sandvig and K. Berg, In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy, Int. J. Cancer, 2001, 92, 761–766.

    Article  CAS  PubMed  Google Scholar 

  46. A. Dietze, Q. Peng, P. K. Selbo, O. Kaalhus, C. Muller, S. Bown and K. Berg, Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin, Br. J. Cancer, 2005, 92, 2004–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. H. Sibata, V. C. Colussi, N. L. Oleinick and T. J. Kinsella, Photodynamic therapy in oncology, Expert Opin. Pharmacother., 2001, 2, 917–927.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Bonsted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonsted, A., Engesæter, B.Ø., Høgset, A. et al. Photochemically enhanced adenoviral transduction in a multicellular environment. Photochem Photobiol Sci 5, 411–421 (2006). https://doi.org/10.1039/b515066c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b515066c

Navigation