Skip to main content

Advertisement

Log in

Heat shock and UV-B-induced DNA damage and mutagenesis in skin

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

There is evidence that heat pre-treatment protects cultured human keratinocytes and normal murine and human skin from ultraviolet (UV) radiation-induced cell death. It has been suggested that heat-shock proteins (hsps), particularly hsp72, are involved in this effect. Hsps are expressed in response to various types of stress, such as UV radiation. Whether heat shock interferes with the repair of UV-induced DNA damage and whether this can be regarded as a protective mechanism is poorly understood and needs further experimental investigation. This review gives an overview of the current state of research in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jäättelä and D. Wissing, Emerging role of heat shock proteins in biology and medicine, Ann. Med., 1992, 24, 249–258.

    Article  Google Scholar 

  2. D. A. Parsell and S. Lindquist, The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annu. Rev. Genet., 1993, 27, 437–496.

    Article  CAS  Google Scholar 

  3. M. J. Gething and J. Sambrook, Protein folding in the cell, Nature, 1992, 355, 33–45.

    Article  CAS  Google Scholar 

  4. J. R. Subjeck, J. J. Sciandara and R. J. Johnston, Heat shock proteins and thermotolerance; a comparison of induction kinetics, Br. J. Radiol., 1982, 55, 579–584.

    Article  CAS  Google Scholar 

  5. D. Kulms and T. Schwarz, Independent contribution of three different pathways to ultraviolet-B-induced apoptosis, Biochem. Pharmacol., 2002, 64, 837–841.

    Article  CAS  Google Scholar 

  6. A. Ziegler, A. S. Jonason and D. J. Leffell, Sunburn and p53 in the onset of skin cancer, Nature, 1994, 372, 773–776.

    Article  CAS  Google Scholar 

  7. K. S. Kane and E. V. Maytin, Ultraviolet B-induced apoptosis of keratinocytes in murine skin is reduced by mild local hyperthermia, J. Invest. Dermatol., 1995, 104, 62–67.

    Article  CAS  Google Scholar 

  8. F. Trautinger, I. Kindas-Mügge, B. Barlan, P. Neuner and R. M. Knobler, 72-kD heat shock protein is a mediator of resistance to ultraviolet light B, J. Invest. Dermatol., 1995, 105, 160–162.

    Article  CAS  Google Scholar 

  9. F. Trautinger, W. Mayr, R. M. Knobler, I. Kindas-Mügge, H. Hönigsmann Increased expression of the 72-kD heat shock protein and reduced sunburn cell formation in human skin after local hyperthermia, J. Invest. Dermatol., 1996, 107, 442–443.

    Article  CAS  Google Scholar 

  10. A. Samali and S. Orrenius, Heat shock proteins: regulators of stress response and apoptosis, Cell Stress Chaperones, 1998, 3, 228–236.

    Article  CAS  Google Scholar 

  11. T. Schmidt-Rose, D. Pollet, K. Will, J. Bergemann and K. P. Wittern, Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells, J. Photochem. Photobiol., B, 1999, 53, 144–152.

    Article  CAS  Google Scholar 

  12. K. Suzuki and M. Watanabe, Modulation of cell growth and mutation induction by introduction of the expression vector of human hsp70 gene, Exp. Cell Res., 1994, 215, 75–81.

    Article  CAS  Google Scholar 

  13. B. C. McKay and A. J. Rainbow, Heat-shock enhanced reactivation of UV-damaged reporter gene in human cells involves the transcription coupled DNA repair pathway, Mutat. Res., 1996, 363, 125–135.

    Article  Google Scholar 

  14. F. Mendez, M. Sandigursky, W. A. Franklin, M. K. Kenny, R. Kureekattil and R. Bases, Heat shock proteins associated with base excision repair enzymes in HeLa cells, Radiat. Res., 2000, 153, 186–195.

    Article  CAS  Google Scholar 

  15. F. Trautinger, I. Trautinger, I. Kindas-Mügge, D. Metze and T. A. Luger, Human keratinocytes in vivo and in vitro constitutively express the 72kD heat shock protein, J. Invest. Dermatol., 1993, 101, 334–338.

    Article  CAS  Google Scholar 

  16. R. Gandour-Edwards, M. McClaren and R. R. Isseroff, Immunolocalization of low-molecular-weight stress protein HSP 27 in normal skin and common cutaneous lesions, Am. J. Dermatopathol., 1994, 16, 504–509.

    Article  CAS  Google Scholar 

  17. F. Trautinger, I. Kindas-Mügge, B. Dekrout, R. M. Knobler and D. Metze, Expression of the 27-kDa heat shock protein in human epidermis and in epidermal neoplasms: an immunohistological study, Br. J. Dermatol., 1995, 133, 194–202.

    Article  CAS  Google Scholar 

  18. Y. Zou, D. J. Crowley, B. Van-Houten Involvement of molecular chaperonins in nucleotide excision repair. Dnak leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance, J. Biol. Chem., 1998, 273, 12–887–12–892.

    Article  Google Scholar 

  19. C. Jantschitsch, G. Klosner, C. Jonak, C. Kokesch, I. Kindas-Mügge and F. Trautinger, The influence of heat shock on DNA-repair after UVB, J. Invest. Dermatol., 2002, 119, 739.

    Google Scholar 

  20. S. D. Morris, D. V. Cumming, D. S. Latchman and D. M. Yellon, Specific induction of the 70-kD heat stress protein by the tyrosine kinase inhibitor herbimycin-A protects rat neonatal cardiomyocytes, J. Clin. Invest., 1996, 97, 706–712.

    Article  CAS  Google Scholar 

  21. L. Vigh, P. N. Literati, I. Horvath, Z. Torok and G. Balogh, Bimoclomol: a nontoxic, hydroxylamine derivate with stress protein-inducing activity and cytoprotective effects, Nat. Med., 1997, 3, 1150–1154.

    Article  CAS  Google Scholar 

  22. D. A. Jurivich, L. Sistonen, R. A. Kroes and R. I. Morimoto, Effect of sodium salicylate on the human heat shock response, Science, 1992, 255, 1243–1245.

    Article  CAS  Google Scholar 

  23. B. S. Lee, J. Chen, C. Angelidis, D. A. Jurivich and R. I. Morimoto, Pharmacological modulation of heat shock factor 1 by anti-inflammatory drugs results in protection against stress-induced cellular damage, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 7207–7211.

    Article  CAS  Google Scholar 

  24. C. Amici, A. Rossi and M. G. Santoro, Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response, Cancer Res., 1995, 55, 4452–4457.

    CAS  PubMed  Google Scholar 

  25. M. G. Santoro, E. Garaci and C. Amici, Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 8407–8411.

    Article  CAS  Google Scholar 

  26. A. Mathew, S. Mathur and R. I. Morimoto, Heat shock response and protein degradation: Regulation of HSF2 by the ubiquitin proteasome pathway, Mol. Cell. Biol., 1998, 18, 5091–5098.

    Article  CAS  Google Scholar 

  27. R. I. Morimoto and M. G. Santoro, Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection, Nat. Biotechnol., 1998, 16, 833–838.

    Article  CAS  Google Scholar 

  28. T. Muramatsu, M. Hatoko and H. Tada, Age-related decrease in the inductability of heat shock protein 72 in normal human skin, Br. J. Dermatol., 1996, 134, 1035–1038.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantschitsch, C., Trautinger, F. Heat shock and UV-B-induced DNA damage and mutagenesis in skin. Photochem Photobiol Sci 2, 899–903 (2003). https://doi.org/10.1039/b301253k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b301253k

Navigation