Skip to main content
Log in

Laser for treatment of aphthous ulcers on bacteria cultures and DNA

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Low-intensity red lasers are proposed for treatment of oral aphthous ulcers based on biostimulative effects. However, effects of low-intensity lasers at fluences used in clinical protocols on DNA are controversial. The aim of this work was to evaluate the effects of low-intensity red laser on survival and induction of filamentation of Escherichia coli cells, and induction of DNA lesions in bacterial plasmids. Escherichia coli cultures were exposed to laser (660 nm, 100 mW, 25 and 45 J cm−2) to study bacterial survival and filamentation. Also, bacterial plasmids were exposed to laser to study DNA lesions by electrophoretic profile and action of DNA repair enzymes. Data indicate that low-intensity red laser: (i) had no effect on survival of E. coli wild type, exonuclease III and formamidopyrimidine DNA glycosylase/MutM protein but decreased the survival of endonuclease III deficient cultures; (ii) induced bacterial filamentation, (iii) there was no alteration in the electrophoretic profile of plasmids in agarose gels, (iv) there was no alteration in the electrophoretic profile of plasmids incubated with formamidopyrimidine DNA glycosylase/MutM protein and endonuclease III enzymes, but it altered the electrophoretic profile of plasmids incubated with exonuclease III. Low-intensity red laser at therapeutic fluences has an effect on the survival of E. coli endonuclease III deficient cells, induces bacterial filamentation in E. coli cultures and DNA lesions targeted by exonuclease III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ratkay-Traub, B. Hopp, Z. Bor, L. Dux, D. L. Becker and T., Krenacs, Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation Exp. Eye Res. 2001 73 291–302

    Article  CAS  PubMed  Google Scholar 

  2. Y. G., Kim, Laser mediated production of reactive oxygen and nitrogen species; implications for therapy Free Radical Res. 2002 36 1243–1250

    Article  CAS  Google Scholar 

  3. X. Gao and D., Xing, Molecular mechanisms of cell proliferation induced by low power laser irradiation J. Biomed. Sci. 2009 16 4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. P. V. Peplow, T. Y. Chung and G. D., Baxter, Laser photobiomodulation of wound healing: a review of experimental studies in Mouse and Rat animal models Photomed. Laser Surg. 2010 28 291–325

    Article  PubMed  Google Scholar 

  5. L. Longo, S. Evangelista, G. Tinacci and A. G., Sesti, Effect of diodes-laser silver arsenide-aluminium (Ga-Al-As) 904 nm on healing of experimental wounds Lasers Surg. Med. 1987 7 444–447

    Article  CAS  PubMed  Google Scholar 

  6. L. Almeida-Lopes, J. Rigau, R. Zangaro, J. Guidugli-Neto and M. M., Jaeger, Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence Lasers Surg. Med. 2001 29 179–184

    Article  CAS  PubMed  Google Scholar 

  7. A. N. Pereira, C. De P. Eduardo, E. Matson and M. M., Marques, Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts Lasers Surg. Med. 2001 31 263–267

    Article  Google Scholar 

  8. T. O. De Souza, M. A. Martins, S. K. Bussadori, K. P. Fernandes, E. Y. Tanji, R. A. Mesquita-Ferrari and M. D., Martins, Clinical evaluation of low-level laser treatment for recurring aphthous stomatitis Photomed. Laser Surg. 2010 28 Suppl 2 S85–S88

    Article  PubMed  Google Scholar 

  9. T., Karu, Primary and secondary mechanisms of action of visible to near-IR radiation on cells J. Photochem. Photobiol., B 1999 49 1–17

    Article  CAS  Google Scholar 

  10. T. Karu, L. Pyatibrat and G., Kalendo, Irradiation with HeNe laser can influence the cytotoxic response of HeLa cells to ionizing radiation Int. J. Radiat. Biol. 1994 65 691–697

    Article  CAS  PubMed  Google Scholar 

  11. S. W. Botchway, A. G. Crisostomo, A. W. Parker and R. H., Bisby, Near infrared multiphoton-induced generation and detection of hydroxyl radicals in a biochemical system Arch. Biochem. Biophys. 2007 464 314–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. H. Hawkins and H., Abrahamse, The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation Lasers Surg. Med. 2006 38 74–83

    Article  PubMed  Google Scholar 

  13. C. Godon, F. P. Cordelières, D. Biard, N. Giocanti, F. Mégnin-Chanet, J. Hall and V., Favaudon, PARP inhibition versus PARP-1 silencing: different outcomes in terms of single-strand break repair and radiation susceptibility Nucleic Acids Res. 2008 36 4454–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. B. Mbene, N. N. Houreld and H. J., Abrahamse, DNA damage after phototherapy in wounded fibroblast cells irradiated with 16 J cm−2J. Photochem. Photobiol., B 2009 94 131–137

    Article  CAS  Google Scholar 

  15. M. A. Turner and R. B., Webb, Comparative mutagenesis and interaction between near-ultraviolet (313 to 405 nm) and far-ultraviolet (254 nm) radiation in Escherichia coli strains with differing repair capabilities J. Bacteriol. 1981 147 410–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. G. Miguel and R. M., Tyrrell, Induction of oxygen-dependent lethal damage by monochromatic UVB (313 nm) radiation: strand breakage, repair and cell death Carcinogenesis 1983 4 375–380

    Article  CAS  PubMed  Google Scholar 

  17. R. Kohli and P. K., Gupta, Irradiance dependence of the He-Ne laser-induced protection against UVC radiation in E. coli strains J. Photochem. Photobiol., B 2003 69 161–167

    Article  CAS  Google Scholar 

  18. A. S. Fonseca, T. O. Moreira, D. L. Paixão, F. M. Farias, O. R. Guimarães, S. Paoli, M. Geller and F., Paoli, Effect of laser therapy on DNA damage Lasers Surg. Med. 2010 42 481–488

    Article  PubMed  Google Scholar 

  19. A. S. Fonseca, M. Geller, M. B. Filho, S. S. Valença and F., Paoli, Low-level infrared laser effect on plasmid DNA Lasers Med. Sci. 2011 27 121–130

    Article  PubMed  Google Scholar 

  20. R. T. Chow, M. I. Johnson, R. A. Lopes-Martins and J. M., Bjordal, Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials Lancet 2009 374 9705 1897–1908

    Article  PubMed  Google Scholar 

  21. P. Angeletti, M. D. Pereira, H. C. Gomes, C. T. Hino and L. M., Ferreira, Effect of low-level laser therapy (GaAlAs) on bone regeneration in midpalatal anterior suture after surgically assisted rapid maxillary expansion Oral Surg., Oral Med., Oral Pathol., Oral Radiol. Endodontol. 2010 109 e38–e46

    Article  Google Scholar 

  22. T. Dai, Y. Y. Huang and M. R., Hamblin, Photodynamic therapy for localized infections - state of the art Photodiagn. Photodyn. Ther. 2009 6 170–188

    Article  CAS  Google Scholar 

  23. S. Perni, P. Prokopovich, J. Pratten, I. P. Parkin and M., Wilson, Nanoparticles: their potential use in antibacterial photodynamic therapy Photochem. Photobiol. Sci. 2011 10 712–720

    Article  CAS  PubMed  Google Scholar 

  24. G. B. Kharkwal, S. K. Sharma, Y. Y. Huang, T. Dai and M. R., Hamblin, Photodynamic therapy for infections: clinical applications Lasers Surg. Med. 2011 43 755–767

    Article  PubMed  PubMed Central  Google Scholar 

  25. N. R. Asad, L. M. Asad, A. B. Silva, I. Felzenszwalb and A. C. Leitão Hydrogen peroxide induces protection against lethal effects of cumene hydroperoxide in Escherichia coli cells: an Ahp dependent and OxyR independent system? Mutat. Res. 1998 407 253–259

    Article  CAS  PubMed  Google Scholar 

  26. A. S. Fonseca, G. A. Presta, M. Geller and F., Paoli, Low intensity infrared laser induces filamentation in Escherichia coli cells Laser Phys. 2011 21 1–9

    Article  CAS  Google Scholar 

  27. J. O. Blaisdell and S. S., Wallace, Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli Proc. Natl. Acad. Sci. U. S. A. 2001 98 7426–7430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. A. Slayden, D. L. Knudson and J. T., Belisle, Identification of cell cycle regulators in mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis Microbiology 2006 152 1789–1797

    Article  CAS  PubMed  Google Scholar 

  29. B. Modenutti, E. Balseiro, G. Corno, C. Callieri, R. Bertoni and E., Caravati, Ultraviolet radiation induces filamentation in bacterial assemblages from North Andean Patagonian lakes Photochem. Photobiol. 2010 86 871–881

    Article  CAS  PubMed  Google Scholar 

  30. J. G. Cappuccino and N. Sherman, Microbiology: A Laboratory Manual, Benjamin Cummings Science Publishing, California, 1999

    Google Scholar 

  31. J. Sambrook, E. F. Fritsch and T. Maniatis, Extraction and purification of plasmid DNA, in Molecular cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press, New York, 1989

    Google Scholar 

  32. G. L. Klebanov, L. A. Strashkevich, T. V. Chichuk, T. M. Modestova and YuA., Vladimirov, Effects of endogenous photosensitizers on the laser-induced priming of leucocytes Membr. Cell Biol. 1998 12 339–354

    CAS  PubMed  Google Scholar 

  33. M. Broccio, F. Della Rovere, F. Granata, U. Wanderlingh, A. Zirilli, A. Tanzariello, G. Pirrone and G., Broccio, Free radical erythrocyte damage in tumoral disease assessed by He-Ne laser and optical microscope through “Heinz Bodies” method Anticancer Res. 1998 18 1075–1078

    CAS  PubMed  Google Scholar 

  34. A. S. Fonseca, G. A. Presta, M. Geller, F. Paoli and S. S. Valença Low-intensity infrared laser increases plasma proteins and induces oxidative stress in vitro Lasers Med. Sci. 2011 27 211–217

    Article  Google Scholar 

  35. M. Atif, S. Firdous, A. Khurshid, L. Noreen, S. S. Z. Zaidi and M., Ikram, In vitro study of 5-aminolevulinic acid-based photodynamic therapy for apoptosis in human cervical HeLa cell line Laser Phys. Lett. 2009 6 886–891

    Article  CAS  Google Scholar 

  36. C. S. Xu and A. W. N., Leung, Light-activated hypericin induces cellular destruction of nasopharyngeal carcinoma cells Laser Phys. Lett. 2010 7 68–72

    Article  CAS  Google Scholar 

  37. C. S. Xu, A. W. N. Leung, L. Liu and X. S., Xia, LED-activated pheophorbide a induces cellular destruction of colon cancer cells Laser Phys. Lett. 2010 7 544–548

    Article  CAS  Google Scholar 

  38. M. Atif, M. Fakhar-e-Alam, S. Firdous, S. S. Z. Zaidi, R. Suleman and M., Ikram, Study of the efficacy of 5-ALA mediated photodynamic therapy on human rhabdomyosarcoma cell line (RD) Laser Phys. Lett. 2010 7 757–764

    Article  CAS  Google Scholar 

  39. J. H. Park, M. Y. Ahn, Y. C. Kim, S. A. Kim, Y. H. Moon, S. G. Ahn and J. H., Yoon, In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorine 6 against Staphylococcus aureus Xen29 Biol. Pharm. Bull. 2012 35 509–514

    Article  CAS  PubMed  Google Scholar 

  40. L. Eibenschutz, S. Marenda, P. Buccini, P. De Simone, A. Ferrari, G. Mariani, V. Silipo and C. Catricalà Giant and large basal cell carcinoma treated with topical photodynamic therapy Eur. J. Dermatol. 2008 18 663–666

    PubMed  Google Scholar 

  41. D. M. Wilson III, B. P. Engelward and L. Samson, Procaryotic base repair, in DNA Damage and Repair. Volume I: DNA Repair in Procaryotes and Lower Eukaryotes, ed. J. A. Nickoloff and M. F. Hoekstra, Humana Press, New Jersey, 1998, pp. 29-64

    Google Scholar 

  42. R. Jain, P. Kumar and U., Varshney, A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria DNA Repair 2007 6 1774–1785

    Article  CAS  PubMed  Google Scholar 

  43. T., Karu, Laser biostimulation: a photobiological phenomenon J. Photochem. Photobiol., B 1989 3 638–640

    Article  CAS  Google Scholar 

  44. W. H. Koch and R. Woodgate, The SOS response, in DNA Damage and Repair. Volume I: DNA Repair in Procaryotes and Lower Eukaryotes, ed. J. A. Nickoloff and M. F. Hoekstra, Humana Press., New Jersey, 1998, pp. 107-134

    Google Scholar 

  45. L. J. Piddock and R. N., Walters, Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division Antimicrob. Agents Chemother. 1992 36 819–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. K. J. Davis, P. Vogel, D. L. Fritz, K. E. Steele, M. L. Pitt and S. L., Welkos, Bacterial filamentation of Yersinia pestis by beta-lactam antibiotics in experimentally infected mice Arch. Pathol. Lab. Med. 1997 121 865–868

    CAS  PubMed  Google Scholar 

  47. B. Weiss, Regulation of endonuclease IV as part of an oxidative stress response in Escherichia coli, in DNA Damage and Repair. Volume I: DNA Repair in Procaryotes and Lower Eukaryotes, ed. J. A. Nickoloff and M. F. Hoekstra, Humana Press., New Jersey, 1998, pp. 85-105

    Google Scholar 

  48. J. A. Imlay and S., Linn, Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide J. Bacteriol. 1987 169 2967–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Park and J. A., Imlay, High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction J. Bacteriol. 2003 185 1942–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. H. Samaluru, L. Saisree and M., Reddy, Role of SufI (FtsP) in cell division of Escherichia coli: evidence for its involvement in stabilizing the assembly of the divisome J. Bacteriol. 2007 189 8044–8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. R. Kohli, B. Bose and P. K., Gupta, Induction of phr gene expression in E. coli strain KY706/pPL-1 by He-Ne laser (632.8 nm) irradiation J. Photochem. Photobiol., B 2001 60 136–142

    Article  CAS  Google Scholar 

  52. R. E. Zirkle and N. R., Krieg, Development of a method based on alkaline gel electrophoresis for estimation of oxidative damage to DNA in Escherichia coli J. Appl. Microbiol. 2008 81 133–138

    Google Scholar 

  53. J. Kujawa, I. B. Zavodnik, A. Lapshina, M. Labieniec and M., Bryszewska, Cell survival, DNA, and protein damage in B14 cells under low-intensity near-infrared (810 nm) laser irradiation Photomed. Laser Surg. 2004 22 504–508

    Article  PubMed  Google Scholar 

  54. D. Hawkins and H., Abrahamse, Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts Photomed. Laser Surg. 2005 23 251–259

    Article  CAS  PubMed  Google Scholar 

  55. N. Grossman, N. Schneid, H. Reuveni, S. Halevy and R., Lubart, 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species Lasers Surg. Med. 1998 22 212–218

    Article  CAS  PubMed  Google Scholar 

  56. K. Nakagiri, M. Okada, Y. Tsuji, M. Yoshida and T., Yamashita, Evaluation of local platelet deposition during laser thermal angioplasty Kobe J. Med. Sci. 1999 45 137–148

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adenilson de Souza da Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva Marciano, R., da Silva Sergio, L.P., Polignano, G.A.C. et al. Laser for treatment of aphthous ulcers on bacteria cultures and DNA. Photochem Photobiol Sci 11, 1476–1483 (2012). https://doi.org/10.1039/c2pp25027f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25027f

Navigation