Skip to main content
Log in

Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Δg)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Foote, Acc. Chem. Res, 1968, 1, 104.

    Article  CAS  Google Scholar 

  2. J. R. Kanofsky, J. Biol. Chem., 1983, 258, 5991.

    Article  CAS  PubMed  Google Scholar 

  3. I. E. Kochevar and R. W. Redmond, Photosensitized production of singlet oxygen, in Singlet oxygen, UV-A, and Ozone. Methods in Enzymology, ed. L. Packer and H. Sies, Academic Press, San Diego, 2000, vol. 319, pp. 20–28.

    Article  CAS  Google Scholar 

  4. C. S. Foote, J. S. Valentine, A. Greenberg and J. F. E. Liebman, Active Oxygen in Biochemistry, Blackie Academic and Professional, London, 1995.

    Google Scholar 

  5. A. Michaeli, J. Feitelson, Photochem. Photobiol., 1994, 59, 3, 284.

    Article  CAS  PubMed  Google Scholar 

  6. A. Michaeli, J. Feitelson, Photochem. Photobiol., 1995, 61, 3, 255.

    Article  CAS  PubMed  Google Scholar 

  7. J. L. Ravanat, P. Di Mascio, G. R. Martinez, M. H. G. Medeiros, J. Cadet, J. Biol. Chem., 2000, 275, 40601.

    Article  CAS  PubMed  Google Scholar 

  8. X. S. Zhang, B. S. Rosenstein, Y. Wang, M. Lebwohl, H. C. Wei, Free Radical Biol. Med., 1997, 23, 980.

    Article  CAS  Google Scholar 

  9. D. E. J. G. Dolmans, D. Fukumura, R. K. Jain, Nat. Rev. Cancer, 2003, 3, 380.

    Article  CAS  PubMed  Google Scholar 

  10. C. Flors, S. Nonell, Acc. Chem. Res., 2006, 39, 293.

    Article  CAS  PubMed  Google Scholar 

  11. C. Laloi, K. Apel, A. Danon, Curr. Opin. Plant Biol., 2004, 7, 323.

    Article  CAS  PubMed  Google Scholar 

  12. C. H. Foyer, G. Noctor, Physiol. Plant., 2003, 119, 355.

    Article  CAS  Google Scholar 

  13. S. W. Ryter, R. M. Tyrrell, Free Radical Biol. Med., 1998, 24, 1520.

    Article  CAS  Google Scholar 

  14. C. Schweitzer, R. Schmidt, Chem. Rev., 2003, 103, 1685.

    Article  CAS  PubMed  Google Scholar 

  15. R. D. Scurlock, S. Nonell, S. E. Braslavsky, P. R. Ogilby, J. Phys. Chem., 1995, 99, 3521.

    Article  CAS  Google Scholar 

  16. S. Nonell and S. E. Braslavsky, Time-resolved singlet oxygen detection, in Singlet oxygen, UV-A, and Ozone. Methods in Enzymology, ed. L. Packer and H. Sies, Academic Press, San Diego, 2000, vol. 319, pp. 37–49.

    Article  CAS  Google Scholar 

  17. S. Y. Egorov, V. F. Kamalov, N. I. Koroteev, A. A. Krasnovsky Jr., B. N. Toleutaev, S. V. Zinukov, Chem. Phys. Lett., 1989, 163, 421.

    Article  CAS  Google Scholar 

  18. M. Niedre, M. S. Patterson, B. C. Wilson, Photochem. Photobiol., 2002, 75, 382.

    Article  CAS  PubMed  Google Scholar 

  19. O. Shimizu, J. Watanabe, K. Imakubo, J. Phys. Soc. Jpn., 1997, 66, 268.

    Article  CAS  Google Scholar 

  20. J. W. Snyder, E. Skovsen, J. D. C. Lambert, P. R. Ogilby, J. Am. Chem. Soc., 2005, 127, 14558.

    Article  CAS  PubMed  Google Scholar 

  21. R. Dedic, A. Molnar, M. Korinek, A. Svoboda, J. Psencik, J. Hala, J. Lumin., 2004, 108, 117.

    Article  CAS  Google Scholar 

  22. A. Baier, M. Maier, R. Engl, M. Landthaler, W. Baumler, J. Phys. Chem. B, 2005, 109, 3041.

    Article  CAS  PubMed  Google Scholar 

  23. D. B. Tada, L. L. R. Vono, E. L. Duarte, R. Itri, P. K. Kiyohara, M. S. Baptista, L. M. Rossi, Langmuir, 2007, 23, 8194.

    Article  CAS  PubMed  Google Scholar 

  24. F. Postigo, M. L. Sagrista, M. A. De Madariaga, S. Nonell, M. Mora, Biochim. Biophys. Acta, 2006, 1758, 583.

    Article  CAS  PubMed  Google Scholar 

  25. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, Springer, Germany, 2005.

    Book  Google Scholar 

  26. J. R. Lakowicz, Principles of fluorescence spectroscopy, Kluwer Academic/Plenum Publishers, New York, 2006.

    Book  Google Scholar 

  27. F. Wilkinson, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 1995, 24, 663.

    Article  CAS  Google Scholar 

  28. R. Schmidt, C. Tanielian, J. Phys. Chem., 2000, 104, 3177.

    Article  CAS  Google Scholar 

  29. K.-K. Iu, R. D. Scurlock, P. R. Ogilby, J. Photochem., 1987, 37, 19.

    Article  CAS  Google Scholar 

  30. J. G. Parker and W. D. Stanbro, Dependence of photosensitized singlet oxygen production on porphyrin structure and solvent, in Porphyrin localization and treatment of tumors, ed. D. R. Doiron and C. J. Gomer, Alan R. Liss, New York, 1984, pp. 259–284.

    Google Scholar 

  31. S. L. Pan, L. J. Rothberg, J. Am. Chem. Soc., 2005, 127, 6087.

    Article  CAS  PubMed  Google Scholar 

  32. J. M. Allen, C. J. Gossett, S. K. Allen, Chem. Res. Toxicol., 1996, 9, 605.

    Article  CAS  PubMed  Google Scholar 

  33. L. De Sola, A. Jimenez-Banzo, S. Nonell, Afinidad, 2008, 64, 251.

    Google Scholar 

  34. S. Yamaguchi, Y. Sasaki, J. Photochem. Photobiol., A, 2001, 142, 47.

    Article  CAS  Google Scholar 

  35. R. D. Scurlock, K.-K. Iu, P. R. Ogilby, J. Photochem., 1987, 37, 247.

    Article  CAS  Google Scholar 

  36. J. C. Stockert, M. Cañete, A. Juarranz, A. Villanueva, R. W. Horobin, J. Borrell, J. Teixido, S. Nonell, Curr. Med. Chem., 2007, 14, 997.

    Article  CAS  PubMed  Google Scholar 

  37. M. Cañete, A. Ortiz, A. Juarranz, A. Villanueva, S. Nonell, J. I. Borrell, J. Teixidó, J. C. Stockert, Anti-Cancer Drug Des., 2000, 15, 143.

    Google Scholar 

  38. M. Cañete, C. Ortega, A. Gavalda, J. Cristobal, A. Juarranz, S. Nonell, J. Teixido, J. I. Borrell, A. Villanueva, S. Rello, J. C. Stockert, Int. J. Oncol., 2004, 24, 1221.

    PubMed  Google Scholar 

  39. N. Rubio, F. Prat, N. Bou, J. I. Borrell, J. Teixido, A. Villanueva, A. Juarranz, M. Canete, J. C. Stockert, S. Nonell, New J. Chem., 2005, 29, 378.

    Article  CAS  Google Scholar 

  40. R. Y. Tsien, Annu. Rev. Biochem., 1998, 67, 509.

    Article  CAS  PubMed  Google Scholar 

  41. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, Science, 2006, 312, 217.

    Article  CAS  PubMed  Google Scholar 

  42. A. F. Bell, D. Stoner-Ma, R. M. Wachter, P. J. Tonge, J. Am. Chem. Soc., 2003, 125, 6919.

    Article  CAS  PubMed  Google Scholar 

  43. L. Greenbaum, C. Rothmann, R. Lavie, Z. Malik, Biol. Chem., 2000, 381, 1251.

    Article  CAS  PubMed  Google Scholar 

  44. A. Beeby, A. W. Parker, C. F. Stanley, J. Photochem. Photobiol., B, 1997, 37, 267.

    Article  CAS  Google Scholar 

  45. A. Jimenez-Banzo, S. Nonell, J. Hofkens, C. Flors, Biophys. J., 2008, 94, 168.

    Article  CAS  PubMed  Google Scholar 

  46. J. W. Snyder, E. Skovsen, J. D. C. Lambert, L. Poulsen, P. R. Ogilby, Phys. Chem. Chem. Phys., 2006, 8, 4280.

    Article  CAS  PubMed  Google Scholar 

  47. A. Jimenez-Banzo, M. L. Sagrista, M. Mora, S. Nonell, Free Radical Biol. Med., 2008, 44, 1926.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Nonell.

Additional information

Edited by T. Gensch and C. Viappiani. This paper is derived from the lecture given at theXSchool of Pure andApplied Biophysics Time-resolved spectroscopic methods in biophysics (organized by the Italian Society of Pure and Applied Biophysics), held in Venice in January 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Banzo, A., Ragàs, X., Kapusta, P. et al. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochem Photobiol Sci 7, 1003–1010 (2008). https://doi.org/10.1039/b804333g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b804333g

Navigation