Skip to main content
Log in

Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence of PpIX induced by topical application of 5-aminolevulinic acid (ALA) in normal mouse skin was studied noninvasively by means of a fibre optic probe. The fluorescence excitation spectrum of PpIX exhibits five distinct peaks at around 408, 510, 543, 583 and 633 nm under fluorescence monitoring at the second emission peak of PpIX (705 nm). The transmission of the excitation light is wavelength dependent: the long wavelength light (>600 nm) penetrates deeper into the tissues by a factor of 6 compared with the short wavelength light (<590 nm). Thus, the fluorescence excitation spectrum of PpIX measured on the surface of the skin can be used to estimate the depth of the penetration of topically applied ALA. The fluorescence excitation spectra calculated for the depth 1.1 mm obtained the best fit with the experimentally measured spectra after topical application of ALA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  2. J. C. Kennedy and R. H. Pottier, Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy, J. Photochem. Photobiol. B, 1992, 14, 275–292.

    Article  CAS  Google Scholar 

  3. J. C. Kennedy, R. H. Pottier and D. C. Pross, Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience, J. Photochem. Photobiol. B, 1990, 6, 143–148.

    Article  CAS  Google Scholar 

  4. Q. Peng, K. Berg, J. Moan, M. Kongshaug and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research, Photochem. Photobiol., 1997, 65, 235–251.

    Article  CAS  Google Scholar 

  5. L. O. Svaasand, P. Wyss, M. T. Wyss, Y. Tadir, B. J. Tromberg and M. W. Berns, Dosimetry model for photodynamic therapy with topically administered photosensitizers, Lasers Surg. Med., 1996, 18, 139–149.

    Article  CAS  Google Scholar 

  6. J. Kloek, W. Akkermans and G. M. Beijersbergen Van Henegouwen, Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin, Photochem. Photobiol., 1998, 67, 150–154.

    Article  CAS  Google Scholar 

  7. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–2308.

    Article  CAS  Google Scholar 

  8. P. Wolf, E. Rieger and H. Kerl, Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. An alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas?, J Am. Acad. Dermatol., 1993, 28, 17–21.

    Article  CAS  Google Scholar 

  9. H. Lui, S. Salasche, N. Kollias, J. Wimberly, T. Flotte, D. McLean and R. R. Anderson, Photodynamic therapy of nonmelanoma skin cancer with topical aminolevulinic acid: a clinical and histologic study, Arch. Dermatol., 1995, 131, 737–738.

    Article  CAS  Google Scholar 

  10. A. Martin, W. D. Tope, J. M. Grevelink, J. C. Starr, J. L. Fewkes, T. J. Flotte, T. F. Deutsch and R. R. Anderson, Lack of selectivity of protoporphyrin IX fluorescence for basal cell carcinoma after topical application of 5-aminolevulinic acid: implications for photodynamic treatment, Arch. Dermatol. Res., 1995, 287, 665–674.

    Article  CAS  Google Scholar 

  11. R. M. Szeimies, T. Sassy and M. Landthaler, Penetration potency of topical applied delta-aminolevulinic acid for photodynamic therapy of basal cell carcinoma, Photochem. Photobiol., 1994, 59, 73–76.

    Article  CAS  Google Scholar 

  12. R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy and L. A. Beiner, Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo, Photochem. Photobiol., 1986, 44, 679–687.

    Article  CAS  Google Scholar 

  13. J. Moan, Q. Peng, R. Sorensen, V. Iani and J. M. Nesland, The biophysical foundations of photodynamic therapy, Endoscopy, 1998, 30, 387–391.

    Article  CAS  Google Scholar 

  14. P. Juzenas, V. Iani, S. Bagdonas, R. Rotomskis and J. Moan, Fluorescence spectroscopy of normal mouse skin exposed to 5-aminolaevulinic acid and red light, J. Photochem. Photobiol. B, 2001, 61, 78–86.

    Article  CAS  Google Scholar 

  15. V. Iani, J. Moan and L. W. Ma, Measurements of light penetration into human tissue in vivo, Proc. SPIE Int. Soc. Opt. Eng., 1996, 2625, 378–383.

    CAS  Google Scholar 

  16. W. M. Sharman, C. M. Allen and J. E. van Lier, Photodynamic therapeutics: basic principles and clinical applications, Drug Discovery Today, 1999, 4, 507–517.

    Article  CAS  Google Scholar 

  17. J. Moan, V. Iani and L. W. Ma, Choice of the proper wavelength for photochemotherapy, Proc. SPIE Int. Soc. Opt. Eng., 1996, 2625, 544–549.

    CAS  Google Scholar 

  18. J. T. van den Akker, H. S. de Bruijn, G. M. Beijersbergen Van Henegouwen, W. M. Star and H. J. Sterenborg, Protoporphyrin IX fluorescence kinetics and localization after topical application of ALA pentyl ester and ALA on hairless mouse skin with UVB-induced early skin cancer, Photochem. Photobiol., 2000, 72, 399–406.

    Article  Google Scholar 

  19. A. Leunig, M. Mehlmann, C. Betz, H. Stepp, S. Arbogast, G. Grevers and R. Baumgartner, Fluorescence staining of oral cancer using a topical application of 5-aminolevulinic acid: fluorescence microscopic studies, J. Photochem. Photobiol. B, 2001, 60, 44–49.

    Article  CAS  Google Scholar 

  20. P. Uehlinger, M. Zellweger, G. Wagnieres, L. Juillerat-Jeanneret, B. H. van den and N. Lange, 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells, J. Photochem. Photobiol. B, 2000, 54, 72–80.

    Article  CAS  Google Scholar 

  21. J. Kloek and G. M. Beijersbergen van Henegouwen, Prodrugs of 5-aminolevulinic acid for photodynamic therapy, Photochem. Photobiol., 1996, 64, 994–1000.

    Article  CAS  Google Scholar 

  22. J. M. Gaullier, K. Berg, Q. Peng, H. Anholt, P. K. Selbo, L. W. Ma and J. Moan, Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture, Cancer Res., 1997, 57, 1481–1486.

    CAS  PubMed  Google Scholar 

  23. S. Gerscher, J. P. Connelly, J. Griffiths, S. B. Brown, A. J. MacRobert, G. Wong and L. E. Rhodes, Comparison of the pharmacokinetics and phototoxicity of protoporphyrin IX metabolized from 5-aminolevulinic acid and two derivatives in human skin in vivo, Photochem. Photobiol., 2000, 72, 569–574.

    Article  CAS  Google Scholar 

  24. S. Gerscher, J. P. Connelly, G. M. Beijersbergen Van Henegouwen, A. J. MacRobert, P. Watt and L. E. Rhodes, A quantitative assessment of protoporphyrin IX metabolism and phototoxicity in human skin following dose-controlled delivery of the prodrugs 5-aminolaevulinic acid and 5-aminolaevulinic acid-n-pentylester, Br. J. Dermatol., 2001, 144, 983–990.

    Article  CAS  Google Scholar 

  25. Q. Peng, A. M. Soler, T. Warloe, J. M. Nesland and K. E. Giercksky, Selective distribution of porphyrins in skin thick basal cell carcinoma after topical application of methyl 5-aminolevulinate, J Photochem. Photobiol. B, 2001, 62, 140–145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juzenas, P., Juzeniene, A., Kaalhus, O. et al. Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo. Photochem Photobiol Sci 1, 745–748 (2002). https://doi.org/10.1039/b203459j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b203459j

Navigation