Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development

Abstract

The tumor suppressor p19ARF inhibits Mdm2, which restricts the activity of p53. Complicated feedback and control mechanisms regulate ARF, Mdm2, and p53 interactions. Here we report that ARF haploinsufficiency completely rescued the p53-dependent effects of Mdm2 haploinsufficiency on B-cell development, survival, and transformation. In contrast to Mdm2+/− B cells, Mdm2+/− B cells deficient in ARF were similar to wild-type B cells in their rates of growth and apoptosis and activation of p53. Consequently, the profoundly reduced numbers of B cells in Mdm2+/−Eμ-myc transgenic mice were restored to normal levels in ARF+/−Mdm2+/−Eμ-myc transgenics. Additionally, ARF+/−Mdm2+/−Eμ-myc transgenics developed lymphomas at rates analogous to those observed for wild-type Eμ-myc transgenics, demonstrating that loss of one allele of ARF rescued the protracted lymphoma latency in Mdm2+/−Eμ-myc transgenics. Importantly, in ARF+/−Mdm2+/−Eμ-myc transgenic lymphomas, p53 was inactivated at the frequency observed in lymphomas of wild-type Eμ-myc transgenics. Collectively, these results support a model whereby the stoichiometry of Mdm2 and ARF controls apoptosis and tumor development, which should have significant implications in the treatment of malignancies that have inactivated ARF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD and Brinster RL . (1985). Nature, 318, 533–538.

  • Alt JR, Greiner TC, Cleveland JL and Eischen CM . (2003). EMBO J., 22, 1442–1450.

  • Barak Y, Juven T, Haffner R and Oren M . (1993). EMBO J., 12, 461–468.

  • Chene P . (2003). Nat. Rev. Cancer, 3, 102–109.

  • Eischen CM, Roussel MF, Korsmeyer SJ and Cleveland JL . (2001). Mol. Cell. Biol., 21, 7653–7662.

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ and Cleveland JL . (1999). Genes Dev., 13, 2658–2669.

  • Foster CJ and Lozano G . (2002). Oncogene, 21, 3525–3531.

  • Freedman DA and Levine AJ . (1998). Mol. Cell. Biol., 18, 7288–7293.

  • Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, Harris CC and Montesano R . (1998). Nucleic Acids Res., 26, 205–213.

  • Honda R, Tanaka H and Yasuda H . (1997). FEBS Lett., 420, 25–27.

  • Honda R and Yasuda H . (1999). EMBO J., 18, 22–27.

  • Jones SN, Roe AE, Donehower LA and Bradley A . (1995). Nature, 378, 206–208.

  • Juven T, Barak Y, Zauberman A, George DL and Oren M . (1993). Oncogene, 8, 3411–3416.

  • Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ and McKinnon PJ . (1999). Cancer Res., 59, 2464–2469.

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF and Sherr CJ . (1998). Proc. Natl. Acad. Sci. USA, 95, 8292–8297.

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G and Sherr CJ . (1997). Cell, 91, 649–659.

  • Korgaonkar C, Zhao L, Modestou M and Quelle DE . (2002). Mol. Cell. Biol., 22, 196–206.

  • Langdon WY, Harris AW, Cory S and Adams JM . (1986). Cell, 47, 11–18.

  • Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR, Lozano G, Rosenberg MP and Finlay CA . (1997). Genes Dev., 11, 714–725.

  • Mendrysa SM, McElwee MK, Michalowski J, O’Leary KA, Young KM and Perry ME . (2003). Mol. Cell. Biol., 23, 462–472.

  • Momand J, Jung D, Wilczynski S and Niland J . (1998). Nucleic Acids Res., 26, 3453–3459.

  • Momand J, Wu HH and Dasgupta G . (2000). Gene, 242, 15–29.

  • Momand J, Zambetti GP, Olson DC, George D and Levine AJ . (1992). Cell, 69, 1237–1245.

  • Montes de Oca Luna R, Wagner DS and Lozano G . (1995). Nature, 378, 203–206.

  • Moore L, Venkatachalam S, Vogel H, Watt JC, Wu CL, Steinman H, Jones SN and Donehower LA . (2003). Oncogene, 22, 7831–7837.

  • O’Leary KA, Mendrysa SM, Vaccaro A and Perry ME . (2004). Mol. Cell. Biol., 24, 186–191.

  • Perry ME, Piette J, Zawadzki JA, Harvey D and Levine AJ . (1993). Proc. Natl. Acad. Sci. USA, 90, 11623–11627.

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C and DePinho RA . (1998). Cell, 92, 713–723.

  • Randle DH, Zindy F, Sherr CJ and Roussel MF . (2001). Proc. Natl. Acad. Sci. USA, 98, 9654–9659.

  • Robertson KD and Jones PA . (1998). Mol. Cell. Biol., 18, 6457–6473.

  • Roth J, Dobbelstein M, Freedman DA, Shenk T and Levine AJ . (1998). EMBO J., 17, 554–564.

  • Russell JL, Powers JT, Rounbehler RJ, Rogers PM, Conti CJ and Johnson DG . (2002). Mol. Cell. Biol., 22, 1360–1368.

  • Schmitt CA, McCurrach ME, de Stanchina E, Wallace-Brodeur RR and Lowe SW . (1999). Genes Dev., 13, 2670–2677.

  • Sherr CJ and DePinho RA . (2000). Cell, 102, 407–410.

  • Sherr CJ and Weber JD . (2000). Curr. Opin. Genet. Dev., 10, 94–99.

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH and Peters G . (1998). EMBO J., 17, 5001–5014.

  • Sun Y . (2003). Cancer Biol. Ther., 2, 623–629.

  • Tolbert D, Lu X, Yin C, Tantama M and Van Dyke T . (2002). Mol. Cell. Biol., 22, 370–377.

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu EA . (2004). Science, 303, 844–848.

  • Wang H, Prasad G, Buolamwini JK and Zhang R . (2001). Curr. Cancer Drug Targets, 1, 177–196.

  • Watanabe T, Ichikawa A, Saito H and Hotta T . (1996). Leuk. Lymphoma, 21, 391–397.

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF, Sherr CJ and Zambetti GP . (2000). Genes Dev., 14, 2358–2365.

  • Wu X, Bayle JH, Olson D and Levine AJ . (1993). Genes Dev., 7, 1126–1132.

  • Zhang Y, Xiong Y and Yarbrough WG . (1998). Cell, 92, 725–734.

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ and Roussel MF . (1998). Genes Dev., 12, 2424–2433.

Download references

Acknowledgements

We thank Drs John Cleveland and Hua Xiao for critically reviewing the manuscript, Drs Guillermina Lozano, Martine Roussel, Charles Sherr, Alan Harris, and Charles Sidman for kindly providing breeder mice that were essential for these studies, Dr Jane Meza for the Kaplan–Meier analysis, and the personnel in the Eppley Institute's animal facility. This work was supported by NCI grant CA098139, the Wanda Rizzo memorial fund, the Eppley Institute for Research in Cancer, and NIH training grant T32 CA09476 (JRA). CME is a Leukemia and Lymphoma Society Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M Eischen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eischen, C., Alt, J. & Wang, P. Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development. Oncogene 23, 8931–8940 (2004). https://doi.org/10.1038/sj.onc.1208052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208052

Keywords

This article is cited by

Search

Quick links