Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Gene expression profiling identifies molecular subtypes of gliomas

An Erratum to this article was published on 13 July 2006

Abstract

Identification of distinct molecular subtypes is a critical challenge for cancer biology. In this study, we used Affymetrix high-density oligonucleotide arrays to identify the global gene expression signatures associated with gliomas of different types and grades. Here, we show that the global transcriptional profiles of gliomas of different types and grades are distinct from each other and from the normal brain. To determine whether our data could be used to uncover molecular subtypes without prior knowledge of pathologic type and grade, we performed K-means clustering analysis and found evidence for three clusters with the aid of multidimensional scaling plots. These clusters corresponded to glioblastomas, lower grade astrocytomas and oligodendrogliomas (P<0.00001). A predictor constructed from the 170 genes that are most differentially expressed between the subsets correctly identified the type and grade of all samples, indicating that a relatively small number of genes can be used to distinguish between these molecular subtypes. These results further define molecular subsets of gliomas which may potentially be used for patient stratification, and suggest potential targets for treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alizadeh AA, Ross DT, Perou CM and van de Rijn M . (2001). J. Pathol., 195, 41–52.

  • Burger MJ, Tebay MA, Keith PA, Samaratunga HM, Clements J, Lavin MF and Gardiner RA . (2002). Int. J. Cancer, 100, 228–237.

  • Coyle JH, Guzik BW, Bor YC, Jin L, Eisner-Smerage L, Taylor SJ, Rekosh D and Hammarskjold ML . (2003). Mol. Cell. Biol., 23, 92–103.

  • De Luca A, Mangiacasale R, Severino A, Malquori L, Baldi A, Palena A, Mileo AM, Lavia P and Paggi MG . (2003). Cancer Res., 63, 1430–1437.

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD and Lander ES . (1999). Science, 286, 531–537.

  • Hastie T, Tibshirani R, Botstein D and Brown P . (2001). Genome Biol., 2(1) Research 003.

  • Hastie T, Tibshirani R and Friedman J . (2001). The Elements of Statistical Learning: Data Mining Inference Prediction. Springer: New York.

    Book  Google Scholar 

  • Her C, Wu X, Griswold MD and Zhou F . (2003). Cancer Res., 63, 865–872.

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G and Jentsch S . (2002). Nature, 419, 135–141.

  • Kaufmann LAR and Rousseeu PJ . (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Inc.: New York.

    Book  Google Scholar 

  • Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC and Cavenee WK . (2002). J. Neuropathol. Exp. Neurol., 61, 215–225 discussion 226–229.

  • Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE, Sampson JH and Riggins GJ . (2002). Cancer Res., 62, 3335–3339.

  • Li C and Wong W . (2001). Proc. Nat. Acad. Inc. USA, 98(1), 31–36.

  • Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, Sorokin LM, Ljubimov AV and Black KL . (2001). Cancer Res., 61, 5601–5610.

  • Lu Q, Paredes M, Medina M, Zhou J, Cavallo R, Peifer M, Orecchio L and Kosik KS . (1999). J. Cell Biol., 144, 519–532.

  • Lykke-Andersen J, Shu MD and Steitz JA . (2001). Science, 293, 1836–1839.

  • MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, Packer RJ, Cogen P and Stephan DA . (2001). Nat. Genet., 29, 143–152.

  • Matter N, Herrlich P and Konig H . (2002). Nature, 420, 691–695.

  • McCusker D, Jones T, Sheer D and Trowsdale J . (1997). Genomics, 45, 362–367.

  • Mischel PS and Cloughesy TF . (2003). Brain Pathol., 13, 52–61.

  • Mischel PS, Shai R, Shi T, Choe GC, Horvath S, Seligson D, Kremen TJ, Palotie A, Liau LM, Cloughesy TF and Nelson SF . (2003). Oncogene, 22 (15) 8361–8373.

  • Najib S and Sanchez-Margalet V . (2002). J. Cell Biochem., 86, 99–106.

  • Nandi D, Woodward E, Ginsburg DB and Monaco JJ . (1997). EMBO J., 16, 5363–5375.

  • Okuda M . (2002). Oncogene, 21, 6170–6174.

  • Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE and Fukasawa K . (2000). Cell, 103, 127–140.

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO and Botstein D . (2000). Nature, 406, 747–752.

  • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES and Golub TR . (2002). Nature, 415, 436–442.

  • Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, Taylor J and Hanash SM . (2001). Cancer Res., 61, 6885–6891.

  • Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN, Choe S and Pollard TD . (2001). Science, 294, 1679–1684.

  • Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi OP and Kononen J . (2000). Cancer Res., 60, 6617–6622.

  • Shav-Tal Y and Zipori D . (2002). FEBS Lett., 531, 109–114.

  • Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC and Golub TR . (2002). Nat. Med., 8, 68–74.

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P and Borresen-Dale AL . (2001). Proc. Natl. Acad. Sci. USA, 98, 10869–10874.

  • Tanahashi N, Suzuki M, Fujiwara T, Takahashi E, Shimbara N, Chung CH and Tanaka K . (1998). Biochem. Biophys. Res. Commun., 243, 229–232.

  • Venables WN and Ripley BD . (1999). Modern Applied Statistic with S-Plus. Springer: New York.

    Book  Google Scholar 

  • Yano T . (2002). Mol. Aspects Med., 23, 345–368.

  • Zhang W, Wang H, Song SW and Fuller GN . (2002). Brain Pathol., 12, 87–94.

Download references

Acknowledgements

This work was supported by U01 CA88127 from the National Cancer Institute (SFN) and K08NS43147 from the National Institute of Neurological Disorders and Stroke (PSM). PSM was also supported by an Accelerate Brain Cancer Cure Award, a Henry E Singleton Brain Tumor Fellowship, a generous donation from the Kevin Riley family to UCLA Comprehensive Brain Tumor Program, and the Harry Allgauer Foundation through The Doris R Ullmann Fund for Brain Tumor Research Technologies. Tao Shi is a predoctoral trainee supported by the UCLA IGERT Bioinformatics Program funded by NSF DGE 9987641.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S Mischel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shai, R., Shi, T., Kremen, T. et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22, 4918–4923 (2003). https://doi.org/10.1038/sj.onc.1206753

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206753

Keywords

This article is cited by

Search

Quick links