Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Lymphoma

Checkpoint kinase 1 (CHK1) protein and mRNA expression is downregulated in aggressive variants of human lymphoid neoplasms

Abstract

CHK1 gene encodes for a serine/threonine kinase involved in the regulation of cell cycle progression and DNA damage checkpoints. To determine the role of CHK1 in the pathogenesis of lymphoid neoplasms and its relationship to other DNA damage response genes, we have analyzed the gene status, protein, and mRNA expression in a series of tumors and nonneoplastic lymphoid tissues. CHK1 protein and mRNA expression levels were very low in both reactive tissues and resting lymphoid cells, whereas tumor samples showed a variable pattern of expression related to their proliferative activity. However, seven aggressive tumors showed a dissociate pattern of extremely low or negative protein expression in spite of a high proliferative activity. Four of these tumors were diffuse large B-cell lymphomas (DLCLs) with concordant reduced levels of mRNA, whereas one blastoid mantle cell lymphoma (B-MCL) and two DLCLs had relatively normal levels of mRNA. No gene mutations, deletions, or hypermethylation of the promoter region were detected in any of these cases. In all these tumors ATM, CHK2, and p53 genes were wild type. These findings suggest that CHK1 inactivation in NHLs occurs by loss of protein expression in a subset of aggressive variants alternatively to ATM, CHK2, and p53 alterations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Nowell PC . Genetic alterations in leukemias and lymphomas: impressive progress and continuing complexity. Cancer Genet Cytogenet 1997; 94: 13–19.

    Article  CAS  PubMed  Google Scholar 

  2. Bea S, Ribas M, Hernandez JM, Bosch F, Pinyol M, Hernandez L et al. Increased number of chromosomal imbalances and high-level DNA amplifications in mantle cell lymphoma are associated with blastoid variants. Blood 1999; 93: 4365–4374.

    CAS  PubMed  Google Scholar 

  3. Bea S, Lopez-Guillermo A, Ribas M, Puig X, Pinyol M, Carrio A et al. Genetic imbalances in progressed B-cell chronic lymphocytic leukemia and transformed large-cell lymphoma (Richter's syndrome). Am J Pathol 2002; 161: 957–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schlegelberger B, Zwingers T, Harder L, Nowotny H, Siebert R, Vesely M et al. Clinicopathogenetic significance of chromosomal abnormalities in patients with blastic peripheral B-cell lymphoma. Kiel-Wien-Lymphoma Study Group. Blood 1999; 94: 3114–3120.

    CAS  PubMed  Google Scholar 

  5. Khanna KK, Jackson SP . DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247–254.

    Article  CAS  PubMed  Google Scholar 

  6. Camacho E, Hernandez L, Hernandez S, Tort F, Bellosillo B, Bea S et al. ATM gene inactivation in mantle cell lymphoma mainly occurs by truncating mutations and missense mutations involving the phosphatidylinositol-3 kinase domain and is associated with increasing numbers of chromosomal imbalances. Blood 2002; 99: 238–244.

    Article  CAS  PubMed  Google Scholar 

  7. Gronbaek K, Worm J, Ralfkiaer E, Ahrenkiel V, Hokland P, Guldberg P . ATM mutations are associated with inactivation of the ARF-TP53 tumor suppressor pathway in diffuse large B-cell lymphoma. Blood 2002; 100: 1430–1437.

    Article  CAS  PubMed  Google Scholar 

  8. Hangaishi A, Ogawa S, Qiao Y, Wang L, Hosoya N, Yuji K et al. Mutations of Chk2 in primary hematopoietic neoplasms. Blood 2002; 99: 3075–3077.

    Article  CAS  PubMed  Google Scholar 

  9. Stankovic T, Stewart GS, Fegan C, Biggs P, Last J, Byrd PJ et al. Ataxia telangiectasia mutated-deficient B-cell chronic lymphocytic leukemia occurs in pregerminal center cells and results in defective damage response and unrepaired chromosome damage. Blood 2002; 99: 300–309.

    Article  CAS  PubMed  Google Scholar 

  10. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 1997; 3: 1155–1159.

    Article  CAS  PubMed  Google Scholar 

  11. Tort F, Hernandez S, Bea S, Martinez A, Esteller M, Herman JG et al. CHK2-decreased protein expression and infrequent genetic alterations mainly occur in aggressive types of non-Hodgkin lymphomas. Blood 2002; 100: 4602–4608.

    Article  CAS  PubMed  Google Scholar 

  12. Bartek J, Lukas J . Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003; 3: 421–429.

    Article  CAS  PubMed  Google Scholar 

  13. Bertoni F, Codegoni AM, Furlan D, Tibiletti MG, Capella C, Broggini M . CHK1 frameshift mutations in genetically unstable colorectal and endometrial cancers. Genes Chromosomes Cancer 1999; 26: 176–180.

    Article  CAS  PubMed  Google Scholar 

  14. Menoyo A, Alazzouzi H, Espin E, Armengol M, Yamamoto H, Schwartz Jr S . Somatic mutations in the DNA damage-response genes ATR and CHK1 in sporadic stomach tumors with microsatellite instability. Cancer Res 2001; 61: 7727–7730.

    CAS  PubMed  Google Scholar 

  15. Vassileva V, Millar A, Briollais L, Chapman W, Bapat B . Genes involved in DNA repair are mutational targets in endometrial cancers with microsatellite instability. Cancer Res 2002; 62: 4095–4099.

    CAS  PubMed  Google Scholar 

  16. Pinyol M, Hernandez L, Martinez A, Cobo F, Hernandez S, Bea S et al. INK4a/ARF locus alterations in human non-Hodgkin's lymphomas mainly occur in tumors with wild-type p53 gene. Am J Pathol 2000; 156: 1987–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaffner C, Idler I, Stilgenbauer S, Dohner H, Lichter P . Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci USA 2000; 97: 2773–2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  19. Haruki N, Saito H, Tatematsu Y, Konishi H, Harano T, Masuda A et al. Histological type-selective, tumor-predominant expression of a novel CHK1 isoform and infrequent in vivo somatic CHK2 mutation in small cell lung cancer. Cancer Res 2000; 60: 4689–4692.

    CAS  PubMed  Google Scholar 

  20. Pinyol M, Hernandez L, Cazorla M, Balbin M, Jares P, Fernandez PL et al. Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 1997; 89: 272–280.

    CAS  PubMed  Google Scholar 

  21. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 1997; 277: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  23. Flaggs G, Plug AW, Dunks KM, Mundt KE, Ford JC, Quiggle MR et al. Atm-dependent interactions of a mammalian chk1 homolog with meiotic chromosomes. Curr Biol 1997; 7: 977–986.

    Article  CAS  PubMed  Google Scholar 

  24. Goff LK, Neat MJ, Crawley CR, Jones L, Jones E, Lister TA et al. The use of real-time quantitative polymerase chain reaction and comparative genomic hybridization to identify amplification of the REL gene in follicular lymphoma. Br J Haematol 2000; 111: 618–625.

    Article  CAS  PubMed  Google Scholar 

  25. Carter TL, Watt PM, Kumar R, Burton PR, Reaman GH, Sather HN et al. Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse. Blood 2001; 97: 572–574.

    Article  CAS  PubMed  Google Scholar 

  26. Martinez A, Bellosillo B, Bosch F, Ferrer A, Marce S, Villamor N et al. Nuclear survivin expression in mantle cell lymphoma is associated with cell proliferation and survival. Am J Pathol 2004; 164: 501–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vahteristo P, Tamminen A, Karvinen P, Eerola H, Eklund C, Aaltonen LA et al. p53, CHK2, and CHK1 genes in Finnish families with Li-Fraumeni syndrome: further evidence of CHK2 in inherited cancer predisposition. Cancer Res 2001; 61: 5718–5722.

    CAS  PubMed  Google Scholar 

  28. Sanz-Vaque L, Colomer D, Bosch F, Lopez-Guillermo A, Dreyling MH, Bosch F et al. Microsatellite instability analysis in typical and progressed mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Haematologica 2001; 86: 181–186.

    CAS  PubMed  Google Scholar 

  29. Kaneko YS, Watanabe N, Morisaki H, Akita H, Fujimoto A, Tominaga K et al. Cell-cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene 1999; 18: 3673–3681.

    Article  CAS  PubMed  Google Scholar 

  30. Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 2001; 61: 4990–4993.

    CAS  PubMed  Google Scholar 

  31. Carrassa L, Broggini M, Vikhanskaya F, Damia G . Characterization of the 5′flanking region of the human Chk1 gene: identification of E2F1 functional sites. Cell Cycle 2003; 2: 604–609.

    Article  CAS  PubMed  Google Scholar 

  32. Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 2003; 278: 14806–14811.

    Article  CAS  PubMed  Google Scholar 

  33. Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3: 247–258.

    Article  CAS  PubMed  Google Scholar 

  34. Myung K, Datta A, Kolodner RD . Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001; 104: 397–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Montse Sánchez and Iracema Nayach for their excellent technical assistance. Sequencing analysis was performed using the Serveis Científico-Tècnics of the University of Barcelona. Comisión Interministerial de Ciencia y Tecnología (CICYT) SAF 02/3261, FIS 01/3046, Redes Temáticas de Centros de Cáncer y Grupos de Estudio de Linfomas CO3 and G179, from the Instituto de Salud Carlos III, and Generalitat de Catalunya (2000SGR118). AR and CB were supported by the Interdisziplinäres Zentrum für klinische Forschung (IZKF), University of Würzburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Campo.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tort, F., Hernández, S., Beà, S. et al. Checkpoint kinase 1 (CHK1) protein and mRNA expression is downregulated in aggressive variants of human lymphoid neoplasms. Leukemia 19, 112–117 (2005). https://doi.org/10.1038/sj.leu.2403571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403571

Keywords

This article is cited by

Search

Quick links