Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

CLL

Increased bone marrow angiogenesis in B cell chronic lymphocytic leukemia

Abstract

Recent studies have shown that angiogenesis may be involved in the pathogenesis of hematopoietic malignancies, apart from its well-characterized role in the growth and metastasis of solid tumors. In this study, we quantified the degree of angiogenesis in B cell chronic lymphocytic leukemia (B-CLL) by measuring the microvessel density and hotspot density in bone marrow trephine biopsy sections with B-CLL involvement (n = 12) and compared it to normal bone marrow sections (n = 11). The B-CLL samples had a mean microvessel count/high power field (hpf) of 7.64 while the control samples had a mean microvessel count/hpf of 2.11 (P = 0.0001). The mean hotspot density in the B-CLL sections (14.83/hotspot) was also significantly higher (P = 0.0008) than the mean hotspot density in control bone marrow sections (7.09/hotspot). Both the microvessel density and hotspot density correlated positively with the clinical stage of the B-CLL patients. In a separate cohort of B-CLL patients, the median urine level of the angiogenic peptide, basic fibroblast growth factor (2216.5 pg/g, n = 14), was significantly higher (P = 0.0001) than the bFGF level in normal controls (1084 pg/g, n = 58). These results indicate that angiogenesis may be involved in the pathogenesis of B-CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Folkman J . Tumor angiogenesis: therapeutic implications New Engl J Med 1971 285: 1182–1186

    Article  CAS  Google Scholar 

  2. Folkman J . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990 82: 4–6

    Article  CAS  Google Scholar 

  3. Bouck N . Tumor angiogenesis: the role of oncogenes and tumor suppressor genes Cancer Cells 1990 2: 179–185

    CAS  PubMed  Google Scholar 

  4. Iruela-Arispe ML, Dvorak HF . Angiogenesis: a dynamic balance of stimulators and inhibitors Thromb Haemost 1997 78: 672–677

    Article  CAS  Google Scholar 

  5. Bussolino F, Mantovani A, Persico G . Molecular mechanisms of blood vessel formation Trends Biochem Sci 1997 22: 251–256

    Article  CAS  Google Scholar 

  6. Blood CH, Zetter BR . Tumor interactions with the vasculature: angiogenesis and tumor metastasis Biochim Biophys Acta 1990 1032: 89–118

    CAS  PubMed  Google Scholar 

  7. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis Cell 1996 86: 353–364

    Article  CAS  Google Scholar 

  8. Zetter BR . Angiogenesis and tumor metastasis Annu Rev Med 1998 49: 407–424

    Article  CAS  Google Scholar 

  9. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia Am J Pathol 1997 150: 815–821

    CAS  PubMed  Google Scholar 

  10. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F . Bone marrow angiogenesis and progression in multiple myeloma Br J Haematol 1994 87: 503–508

    Article  CAS  Google Scholar 

  11. Vacca A, Di Loreto M, Ribatti D, Di Stefano R, Gadaleta-Caldarola G, Iodice G, Caloro D, Dammacco F . Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-1, and CD44 Am J Hematol 1995 50: 9–14

    Article  CAS  Google Scholar 

  12. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F . Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma Blood 1999 93: 3064–3073

    CAS  Google Scholar 

  13. Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F . Angiogenesis spectrum in the stroma of B cell non-Hodgkin's lymphomas. An immunohistochemical and ultrastructural study Eur J Haematol 1996 56: 45–53

    Article  CAS  Google Scholar 

  14. Hakimian D, Tallman MS, Kiley C, Peterson L . Detection of minimal residual disease by immunostaining of bone marrow biopsies after 2-chlorodeoxyadenosine for hairy cell leukemia Blood 1993 82: 1798–1802

    CAS  PubMed  Google Scholar 

  15. Weidner N, Semple JP, Welch WR, Folkman J . Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma New Engl J Med 1991 324: 1–8

    Article  CAS  Google Scholar 

  16. Weidner N . Intratumor microvessel density as a prognostic factor in cancer Am J Pathol 1995 147: 9–19

    CAS  PubMed  Google Scholar 

  17. Rak JW, St Croix BD, Kerbel RS . Consequences of angiogenesis for tumor progression metastasis and cancer therapy Anticancer Drugs 1995 6: 3–18

    Article  CAS  Google Scholar 

  18. Nguyen M, Watanabe H, Budson A, Richie JP, Hayes DF, Folkman J . Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers J Natl Cancer Inst 1994 86: 356–361

    Article  CAS  Google Scholar 

  19. Menzel T, Rahman Z, Calleja E, White K, Wilson EL, Wieder R, Gabrilove J . Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine Blood 1996 87: 1056–1063

    CAS  PubMed  Google Scholar 

  20. Fiedler W, Graeven U, Ergun S, Verago S, Kilic N, Stockschlader M, Hossfeld DK . Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia Blood 1997 89: 1870–1875

    CAS  PubMed  Google Scholar 

  21. Konig A, Menzel T, Lynen S, Wrazel L, Rosen A, Al Katib A, Raveche E, Gabrilove JL . Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis Leukemia 1997 11: 258–265

    Article  CAS  Google Scholar 

  22. Reed JC . Molecular biology of chronic lymphocytic leukemia: implications for therapy Semin Hematol 1998 35: 3–13

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Nancy Bone and Susan Connors for technical assistance, and Dr Judah Folkman for helpful suggestions and encouragement.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kini, A., Kay, N. & Peterson, L. Increased bone marrow angiogenesis in B cell chronic lymphocytic leukemia. Leukemia 14, 1414–1418 (2000). https://doi.org/10.1038/sj.leu.2401825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401825

Keywords

This article is cited by

Search

Quick links