Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The metabolic role of vagal afferent innervation

Abstract

The regulation of energy and glucose balance contributes to whole-body metabolic homeostasis, and such metabolic regulation is disrupted in obesity and diabetes. Metabolic homeostasis is orchestrated partly in response to nutrient and vagal-dependent gut-initiated functions. Specifically, the sensory and motor fibres of the vagus nerve transmit intestinal signals to the central nervous system and exert biological and physiological responses. In the past decade, the understanding of the regulation of vagal afferent signals and of the associated metabolic effect on whole-body energy and glucose balance has progressed. This Review highlights the contributions made to the understanding of the vagal afferent system and examines the integrative role of the vagal afferent in gastrointestinal regulation of appetite and glucose homeostasis. Investigating the integrative and metabolic role of vagal afferent signalling represents a potential strategy to discover novel therapeutic targets to restore energy and glucose balance in diabetes and obesity.

Key points

  • Vagal afferent nerve terminals innervate layers of the gastrointestinal wall to sense nutrient-related hormonal and/or mechanical signals and trigger neuronal transmission to the central nervous system to affect metabolic homeostasis.

  • Nutrient-dependent hormonal and mechanical stimulation in the stomach and the intestine regulate feeding through the vagal afferent network.

  • Nutrient-dependent hormonal stimulation in the intestine regulates glucose homeostasis through the vagal afferent network.

  • Manipulating gut nutrient-dependent and vagal-dependent afferent firing represents a potential novel therapeutic strategy for obesity and diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subdiaphragmatic vagal afferent innervation and gross anatomical organization of the nodose ganglia.
Fig. 2: Distribution of the vagal afferent nerve terminals that respond to hormonal and mechanically dependent signals.
Fig. 3: Schematic diagram for the proposed signal transmission pathways for the vagal afferent system.
Fig. 4: Role of the gut vagal afferent system in feeding and glucose regulation.

Similar content being viewed by others

References

  1. Duca, F. A., Bauer, P. V., Hamr, S. C. & Lam, T. K. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab. 22, 367–380 (2015).

    CAS  PubMed  Google Scholar 

  2. Cummings, D. E. & Overduin, J. Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Janssen, S. & Depoortere, I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol. Metab. 24, 92–100 (2013).

    CAS  PubMed  Google Scholar 

  4. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    CAS  PubMed  Google Scholar 

  5. Furness, J. B., Rivera, L. R., Cho, H.-J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740 (2013).

    CAS  PubMed  Google Scholar 

  6. Brookes, S. J., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013).

    CAS  PubMed  Google Scholar 

  7. Berthoud, H. R., Patterson, L. M., Neumann, F. & Neuhuber, W. L. Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat. Embryol. 195, 183–191 (1997).

    CAS  Google Scholar 

  8. Wang, F. B. & Powley, T. L. Topographic inventories of vagal afferents in gastrointestinal muscle. J. Comp. Neurol. 421, 302–324 (2000).

    CAS  PubMed  Google Scholar 

  9. Berthoud, H. R., Carlson, N. R. & Powley, T. L. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am. J. Physiol. 260, R200–R207 (1991).

    CAS  PubMed  Google Scholar 

  10. Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294 (2012).

    CAS  PubMed  Google Scholar 

  11. Blackshaw, L. A., Brookes, S. J., Grundy, D. & Schemann, M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil. 19, 1–19 (2007).

    CAS  PubMed  Google Scholar 

  12. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    CAS  PubMed  Google Scholar 

  13. Travagli, R. A. & Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 13, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Browning, K. N., Verheijden, S. & Boeckxstaens, G. E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152, 730–744 (2017).

    PubMed  Google Scholar 

  15. Grill, H. J. & Hayes, M. R. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 16, 296–309 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Berthoud, H. R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Undem, B. J. & Weinreich, D. Advances in Vagal Afferent Neurobiology (CRC Press, 2005).

  18. Monkhouse, S. Cranial Nerves: Functional Anatomy (Cambridge Univ. Press, 2005).

  19. Patestas, M. A. & Gartner, L. P. A. Textbook of Neuroanatomy (John Wiley & Sons, 2016).

  20. Hammer, N. et al. Human vagus nerve branching in the cervical region. PLOS One 10, e0118006 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Liu, H. F., Won, H. S., Chung, I. H., Kim, I. B. & Han, S. H. Distribution of the internal branch of the human accessory nerve. Anat. Sci. Int. 90, 180–186 (2015).

    PubMed  Google Scholar 

  22. Wang, F. B., Young, Y. K. & Kao, C. K. Abdominal vagal afferent pathways and their distributions of intraganglionic laminar endings in the rat duodenum. J. Comp. Neurol. 520, 1098–1113 (2012).

    PubMed  Google Scholar 

  23. Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    CAS  PubMed  Google Scholar 

  24. Norgren, R. & Smith, G. P. Central distribution of subdiaphragmatic vagal branches in the rat. J. Comp. Neurol. 273, 207–223 (1988).

    CAS  PubMed  Google Scholar 

  25. Sawchenko, P. E. Central connections of the sensory and motor nuclei of the vagus nerve. J. Auton. Nerv. Syst. 9, 13–26 (1983).

    CAS  PubMed  Google Scholar 

  26. Rinaman, L., Card, J. P., Schwaber, J. S. & Miselis, R. R. Ultrastructural demonstration of a gastric monosynaptic vagal circuit in the nucleus of the solitary tract in rat. J. Neurosci. 9, 1985–1996 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooper, E. Synapse formation among developing sensory neurones from rat nodose ganglia grown in tissue culture. J. Physiol. 351, 263–274 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Czaja, K., Ritter, R. C. & Burns, G. A. N-Methyl-d-aspartate receptor subunit phenotypes of vagal afferent neurons in nodose ganglia of the rat. J. Comp. Neurol. 496, 877–885 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fox, E. A. et al. Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J. Neurosci. 21, 8602–8615 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ducreux, C., Reynaud, J. C. & Puizillout, J. J. Spike conduction properties of T-shaped C neurons in the rabbit nodose ganglion. Pflugers Arch. 424, 238–244 (1993).

    CAS  PubMed  Google Scholar 

  31. Stansfeld, C. E. & Wallis, D. I. Properties of visceral primary afferent neurons in the nodose ganglion of the rabbit. J. Neurophysiol. 54, 245–260 (1985).

    CAS  PubMed  Google Scholar 

  32. Mei, N., Condamin, M. & Boyer, A. The composition of the vagus nerve of the cat. Cell Tissue Res. 209, 423–431 (1980).

    CAS  PubMed  Google Scholar 

  33. Gallego, R. & Eyzaguirre, C. Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. J. Neurophysiol. 41, 1217–1232 (1978).

    CAS  PubMed  Google Scholar 

  34. Ikeda, S. R., Schofield, G. G. & Weight, F. F. Na+ and Ca2+ currents of acutely isolated adult rat nodose ganglion cells. J. Neurophysiol. 55, 527–539 (1986).

    CAS  PubMed  Google Scholar 

  35. Schild, J. H. et al. A and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics. J. Neurophysiol. 71, 2338–2358 (1994).

    CAS  PubMed  Google Scholar 

  36. Prechtl, J. C. & Powley, T. L. A light and electron microscopic examination of the vagal hepatic branch of the rat. Anat. Embryol. 176, 115–126 (1987).

    CAS  Google Scholar 

  37. Gabella, G. & Pease, H. L. Number of axons in the abdominal vagus of the rat. Brain Res. 58, 465–469 (1973).

    CAS  PubMed  Google Scholar 

  38. Agostoni, E., Chinnock, J. E., De Daly, M. B. & Murray, J. G. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. 135, 182–205 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moriarty, P., Dimaline, R., Thompson, D. G. & Dockray, G. J. Characterization of cholecystokininA and cholecystokininB receptors expressed by vagal afferent neurons. Neuroscience 79, 905–913 (1997).

    CAS  PubMed  Google Scholar 

  40. Nakagawa, A. et al. Receptor gene expression of glucagon-like peptide-1, but not glucose-dependent insulinotropic polypeptide, in rat nodose ganglion cells. Auton. Neurosci. 110, 36–43 (2004).

    CAS  PubMed  Google Scholar 

  41. Burdyga, G., Varro, A., Dimaline, R., Thompson, D. G. & Dockray, G. J. Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1289–G1297 (2006).

    CAS  PubMed  Google Scholar 

  42. Moran, T. H., Smith, G. P., Hostetler, A. M. & McHugh, P. R. Transport of cholecystokinin (CCK) binding sites in subdiaphragmatic vagal branches. Brain Res. 415, 149–152 (1987).

    CAS  PubMed  Google Scholar 

  43. Date, Y. et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128 (2002).

    CAS  PubMed  Google Scholar 

  44. Thomas, P. K. The connective tissue of peripheral nerve: an electron microscope study. J. Anat. 97, 35–44 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gamble, H. J. & Eames, R. A. An electron microscope study of the connective tissues of the human peripheral nerve. J. Anat. 98, 655–663 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Waise, T. M. et al. One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem. Biophys. Res. Commun. 464, 1157–1162 (2015).

    CAS  PubMed  Google Scholar 

  47. Gallaher, Z. R., Ryu, V., Herzog, T., Ritter, R. C. & Czaja, K. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy. Neurosci. Lett. 513, 31–36 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yakura, T. et al. Satellite glial cells in the nodose ganglion of the rat vagus nerve: morphological alterations of microglial cells. Biomed. Res. 24, 1–6 (2013).

    Google Scholar 

  49. Powley, T. L. et al. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil. 20, 69–79 (2008).

    CAS  PubMed  Google Scholar 

  50. Powley, T. L., Spaulding, R. A. & Haglof, S. A. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J. Comp. Neurol. 519, 644–660 (2011).

    PubMed  PubMed Central  Google Scholar 

  51. Berthoud, H. R. & Powley, T. L. Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J. Comp. Neurol. 319, 261–276 (1992).

    CAS  PubMed  Google Scholar 

  52. Rodrigo, J. et al. Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods. Acta Anat. 112, 47–57 (1982).

    CAS  PubMed  Google Scholar 

  53. Powley, T. L. & Phillips, R. J. Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience 186, 188–200 (2011).

    CAS  PubMed  Google Scholar 

  54. Powley, T. L. et al. Organization of vagal afferents in pylorus: mechanoreceptors arrayed for high sensitivity and fine spatial resolution? Auton. Neurosci. 183, 36–48 (2014).

    PubMed  Google Scholar 

  55. Kentish, S. J. & Page, A. J. Plasticity of gastro-intestinal vagal afferent endings. Physiol. Behav. 136, 170–178 (2014).

    CAS  PubMed  Google Scholar 

  56. Berthoud, H. R., Kressel, M., Raybould, H. E. & Neuhuber, W. L. Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat. Embryol. 191, 203–212 (1995).

    CAS  Google Scholar 

  57. Page, A. J. & Blackshaw, L. A. An in vitro study of the properties of vagal afferent fibres innervating the ferret oesophagus and stomach. J. Physiol. 512, 907–916 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Page, A. J., Martin, C. M. & Blackshaw, L. A. Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J. Neurophysiol. 87, 2095–2103 (2002).

    CAS  PubMed  Google Scholar 

  59. Page, A. J., Symonds, E., Peiris, M., Blackshaw, L. A. & Young, R. L. Peripheral neural targets in obesity. Br. J. Pharmacol. 166, 1537–1558 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoo, B. B. & Mazmanian, S. K. The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46, 910–926 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Steinert, R. E. et al. Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97, 411–463 (2017).

    PubMed  Google Scholar 

  62. Berthoud, H. R. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil. 20 (Suppl. 1), 64–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Page, A. J. & Kentish, S. J. Plasticity of gastrointestinal vagal afferent satiety signals. Neurogastroenterol Motil. 29, e12973 (2017).

    Google Scholar 

  64. Schwartz, G. J., McHugh, P. R. & Moran, T. H. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. Am. J. Physiol. 261, R64–R69 (1991).

    CAS  PubMed  Google Scholar 

  65. Schwartz, G. J. & Moran, T. H. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neurosci. Biobehav Rev. 20, 47–56 (1996).

    CAS  PubMed  Google Scholar 

  66. Blackshaw, L. A., Grundy, D. & Scratcherd, T. Vagal afferent discharge from gastric mechanoreceptors during contraction and relaxation of the ferret corpus. J. Auton. Nerv. Syst. 18, 19–24 (1987).

    CAS  PubMed  Google Scholar 

  67. Blackshaw, L. A., Grundy, D. & Scratcherd, T. Involvement of gastrointestinal mechano- and intestinal chemoreceptors in vagal reflexes: an electrophysiological study. J. Auton. Nerv. Syst. 18, 225–234 (1987).

    CAS  PubMed  Google Scholar 

  68. Gaisano, G. G., Park, S. J., Daly, D. M. & Beyak, M. J. Glucagon-like peptide-1 inhibits voltage-gated potassium currents in mouse nodose ganglion neurons. Neurogastroenterol Motil. 22, 470–479 (2010).

    CAS  PubMed  Google Scholar 

  69. Heldsinger, A., Grabauskas, G., Song, I. & Owyang, C. Synergistic interaction between leptin and cholecystokinin in the rat nodose ganglia is mediated by PI3K and STAT3 signaling pathways: implications for leptin as a regulator of short term satiety. J. Biol. Chem. 286, 11707–11715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    CAS  PubMed  Google Scholar 

  71. Grabauskas, G. et al. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J. Physiol. 593, 3973–3989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Iwasaki, Y., Goswami, C. & Yada, T. Glucagon-like peptide-1 and insulin synergistically activate vagal afferent neurons. Neuropeptides 65, 77–82 (2017).

    CAS  PubMed  Google Scholar 

  73. Iwasaki, Y. et al. Insulin activates vagal afferent neurons including those innervating pancreas via insulin cascade and Ca(2 + ) influx: its dysfunction in IRS2-KO mice with hyperphagic obesity. PLOS One 8, e67198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Williams, E. K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Verkhratsky, A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol. Rev. 85, 201–279 (2005).

    CAS  PubMed  Google Scholar 

  76. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    CAS  PubMed  Google Scholar 

  77. Peters, J. H., McDougall, S. J., Fawley, J. A., Smith, S. M. & Andresen, M. C. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron 65, 657–669 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fenwick, A. J., Wu, S. W. & Peters, J. H. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses. Front. Neurosci. 8, 6 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Mendelowitz, D., Reynolds, P. J. & Andresen, M. C. Heterogeneous functional expression of calcium channels at sensory and synaptic regions in nodose neurons. J. Neurophysiol. 73, 872–875 (1995).

    CAS  PubMed  Google Scholar 

  80. Wu, S. W., Fenwick, A. J. & Peters, J. H. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons. Physiol. Behav. 136, 179–184 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zheng, H., Kelly, L., Patterson, L. M. & Berthoud, H. R. Effect of brain stem NMDA-receptor blockade by MK-801 on behavioral and fos responses to vagal satiety signals. Am. J. Physiol. 277, R1104–R1111 (1999).

    CAS  PubMed  Google Scholar 

  82. Zheng, H., Patterson, L. M. & Berthoud, H. R. CART in the dorsal vagal complex: sources of immunoreactivity and effects on Fos expression and food intake. Brain Res. 957, 298–310 (2002).

    CAS  PubMed  Google Scholar 

  83. Heldsinger, A. et al. Cocaine- and amphetamine-regulated transcript is the neurotransmitter regulating the action of cholecystokinin and leptin on short-term satiety in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G1042–G1051 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Grabauskas, G. & Owyang, C. Plasticity of vagal afferent signaling in the gut. Medicina 53, 73–84 (2017).

    PubMed  Google Scholar 

  85. Dockray, G. J. Gastrointestinal hormones and the dialogue between gut and brain. J. Physiol. 592, 2927–2941 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Andermann, M. L. & Lowell, B. B. Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reimann, F., Tolhurst, G. & Gribble, F. M. G-Protein-coupled receptors in intestinal chemosensation. Cell Metab. 15, 421–431 (2012).

    CAS  PubMed  Google Scholar 

  88. Jang, H. J. et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl Acad. Sci. USA 104, 15069–15074 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gerspach, A. C., Steinert, R. E., Schonenberger, L., Graber-Maier, A. & Beglinger, C. The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301, E317–E325 (2011).

    CAS  PubMed  Google Scholar 

  90. Ma, J. et al. Effect of the artificial sweetener, sucralose, on small intestinal glucose absorption in healthy human subjects. Br. J. Nutr. 104, 803–806 (2010).

    CAS  PubMed  Google Scholar 

  91. Pepino, M. Y., Tiemann, C. D., Patterson, B. W., Wice, B. M. & Klein, S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care 36, 2530–2535 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wu, T. et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am. J. Clin. Nutr. 95, 78–83 (2012).

    CAS  PubMed  Google Scholar 

  93. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kuhre, R. E., Frost, C. R., Svendsen, B. & Holst, J. J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64, 370–382 (2015).

    CAS  PubMed  Google Scholar 

  95. Parker, H. E. et al. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55, 2445–2455 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gribble, F. M., Williams, L., Simpson, A. K. & Reimann, F. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52, 1147–1154 (2003).

    CAS  PubMed  Google Scholar 

  97. Gorboulev, V. et al. Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).

    CAS  PubMed  Google Scholar 

  98. Moriya, R., Shirakura, T., Ito, J., Mashiko, S. & Seo, T. Activation of sodium-glucose cotransporter 1 ameliorates hyperglycemia by mediating incretin secretion in mice. Am. J. Physiol. Endocrinol. Metab. 297, E1358–E1365 (2009).

    CAS  PubMed  Google Scholar 

  99. Liddle, R. A., Goldfine, I. D., Rosen, M. S., Taplitz, R. A. & Williams, J. A. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest. 75, 1144–1152 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bowen, J., Noakes, M. & Clifton, P. M. Appetite regulatory hormone responses to various dietary proteins differ by body mass index status despite similar reductions in ad libitum energy intake. J. Clin. Endocrinol. Metab. 91, 2913–2919 (2006).

    CAS  PubMed  Google Scholar 

  101. Lejeune, M. P., Westerterp, K. R., Adam, T. C., Luscombe-Marsh, N. D. & Westerterp-Plantenga, M. S. Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber. Am. J. Clin. Nutr. 83, 89–94 (2006).

    CAS  PubMed  Google Scholar 

  102. van der Klaauw, A. A. et al. High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring) 21, 1602–1607 (2013).

    Google Scholar 

  103. Carr, R. D. et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men. Am. J. Physiol. Endocrinol. Metab. 295, E779–E784 (2008).

    CAS  PubMed  Google Scholar 

  104. Karamanlis, A. et al. Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects. Am. J. Clin. Nutr. 86, 1364–1368 (2007).

    CAS  PubMed  Google Scholar 

  105. Wolfe, M. M., Zhao, K. B., Glazier, K. D., Jarboe, L. A. & Tseng, C. C. Regulation of glucose-dependent insulinotropic polypeptide release by protein in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G561–G566 (2000).

    CAS  PubMed  Google Scholar 

  106. Cuber, J. C. et al. Luminal CCK-releasing factors in the isolated vascularly perfused rat duodenojejunum. Am. J. Physiol. 259, G191–G197 (1990).

    CAS  PubMed  Google Scholar 

  107. Choi, S. et al. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1366–G1375 (2007).

    CAS  PubMed  Google Scholar 

  108. Wang, Y. et al. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G528–G537 (2011).

    CAS  PubMed  Google Scholar 

  109. Elliott, R. M. et al. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol. 138, 159–166 (1993).

    CAS  PubMed  Google Scholar 

  110. Cordier-Bussat, M. et al. Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 47, 1038–1045 (1998).

    CAS  PubMed  Google Scholar 

  111. Steinert, R. E. et al. Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J. Clin. Endocrinol. Metab. 99, 3275–3284 (2014).

    CAS  PubMed  Google Scholar 

  112. Greenfield, J. R. et al. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. Am. J. Clin. Nutr. 89, 106–113 (2009).

    CAS  PubMed  Google Scholar 

  113. Samocha-Bonet, D. et al. Glutamine reduces postprandial glycemia and augments the glucagon-like peptide-1 response in type 2 diabetes patients. J. Nutr. 141, 1233–1238 (2011).

    CAS  PubMed  Google Scholar 

  114. Tolhurst, G. et al. Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+ and cAMP. Endocrinology 152, 405–413 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Groneberg, D. A., Doring, F., Eynott, P. R., Fischer, A. & Daniel, H. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G697–G704 (2001).

    CAS  PubMed  Google Scholar 

  116. Walker, D., Thwaites, D. T., Simmons, N. L., Gilbert, H. J. & Hirst, B. H. Substrate upregulation of the human small intestinal peptide transporter, hPepT1. J. Physiol. 507, 697–706 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Diakogiannaki, E. et al. Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56, 2688–2696 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).

    CAS  PubMed  Google Scholar 

  119. Hopman, W. P., Jansen, J. B., Rosenbusch, G. & Lamers, C. B. Effect of equimolar amounts of long-chain triglycerides and medium-chain triglycerides on plasma cholecystokinin and gallbladder contraction. Am. J. Clin. Nutr. 39, 356–359 (1984).

    CAS  PubMed  Google Scholar 

  120. Pilichiewicz, A. N. et al. Effects of load, and duration, of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R668–R677 (2006).

    CAS  PubMed  Google Scholar 

  121. Ellrichmann, M. et al. Orlistat inhibition of intestinal lipase acutely increases appetite and attenuates postprandial glucagon-like peptide-1-(7–36)-amide-1, cholecystokinin, and peptide YY concentrations. J. Clin. Endocrinol. Metab. 93, 3995–3998 (2008).

    CAS  PubMed  Google Scholar 

  122. Beglinger, S. et al. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J. Clin. Endocrinol. Metab. 95, 879–886 (2010).

    CAS  PubMed  Google Scholar 

  123. McLaughlin, J. Long-chain fatty acid sensing in the gastrointestinal tract. Biochem. Soc. Trans. 35, 1199–1202 (2007).

    CAS  PubMed  Google Scholar 

  124. Thomsen, C. et al. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am. J. Clin. Nutr. 69, 1135–1143 (1999).

    CAS  PubMed  Google Scholar 

  125. Tanaka, T. et al. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch. Pharmacol. 377, 523–527 (2008).

    CAS  PubMed  Google Scholar 

  126. Feltrin, K. L. et al. Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R524–R533 (2004).

    CAS  PubMed  Google Scholar 

  127. Freeland, K. R. & Wolever, T. M. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br. J. Nutr. 103, 460–466 (2010).

    CAS  PubMed  Google Scholar 

  128. Zhou, J. et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 295, E1160–E1166 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Liou, A. P. et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140, 903–912 (2011).

    CAS  PubMed  Google Scholar 

  130. Xiong, Y. et al. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol. Cell Endocrinol. 369, 119–129 (2013).

    CAS  PubMed  Google Scholar 

  131. Edfalk, S., Steneberg, P. & Edlund, H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57, 2280–2287 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Overton, H. A. et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3, 167–175 (2006).

    CAS  PubMed  Google Scholar 

  133. Chu, Z. L. et al. N-Oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol. Endocrinol. 24, 161–170 (2010).

    PubMed  PubMed Central  Google Scholar 

  134. Parker, H. E., Habib, A. M., Rogers, G. J., Gribble, F. M. & Reimann, F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52, 289–298 (2009).

    CAS  PubMed  Google Scholar 

  135. Cvijanovic, N. et al. Duodenal fatty acid sensor and transporter expression following acute fat exposure in healthy lean humans. Clin. Nutr. 36, 564–569 (2017).

    CAS  PubMed  Google Scholar 

  136. Schwartz, G. J. et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 8, 281–288 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sundaresan, S. et al. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. FASEB J. 27, 1191–1202 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Poreba, M. A. et al. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells. Am. J. Physiol. Endocrinol. Metab. 303, E899–E907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, P. Y. et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452, 1012–1016 (2008).

    CAS  PubMed  Google Scholar 

  140. Bucinskaite, V. et al. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. Neurogastroenterol Motil. 21, 978 (2009).

    CAS  PubMed  Google Scholar 

  141. Vahl, T. P. et al. Glucagon-like peptide-1 (GLP-1) receptors expressed on nerve terminals in the portal vein mediate the effects of endogenous GLP-1 on glucose tolerance in rats. Endocrinology 148, 4965–4973 (2007).

    CAS  PubMed  Google Scholar 

  142. Smith, G. P., Jerome, C. & Norgren, R. Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats. Am. J. Physiol. 249, R638–R641 (1985).

    CAS  PubMed  Google Scholar 

  143. Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    CAS  PubMed  Google Scholar 

  144. le Roux, C. W. et al. Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J. Clin. Endocrinol. Metab. 90, 4521–4524 (2005).

    PubMed  Google Scholar 

  145. MacLean, D. B. Abrogation of peripheral cholecystokinin-satiety in the capsaicin treated rat. Regul. Pept. 11, 321–333 (1985).

    CAS  PubMed  Google Scholar 

  146. Schwartz, G. J., Salorio, C. F., Skoglund, C. & Moran, T. H. Gut vagal afferent lesions increase meal size but do not block gastric preload-induced feeding suppression. Am. J. Physiol. 276, R1623–R1629 (1999).

    CAS  PubMed  Google Scholar 

  147. Kanoski, S. E., Fortin, S. M., Arnold, M., Grill, H. J. & Hayes, M. R. Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152, 3103–3112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ruttimann, E. B., Arnold, M., Hillebrand, J. J., Geary, N. & Langhans, W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150, 1174–1181 (2009).

    CAS  PubMed  Google Scholar 

  149. Kentish, S. et al. Diet-induced adaptation of vagal afferent function. J. Physiol. 590, 209–221 (2012).

    CAS  PubMed  Google Scholar 

  150. Gautron, L. et al. Genetic tracing of Nav1.8-expressing vagal afferents in the mouse. J. Comp. Neurol. 519, 3085–3101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Berthoud, H. R. & Patterson, L. M. Anatomical relationship between vagal afferent fibers and CCK-immunoreactive entero-endocrine cells in the rat small intestinal mucosa. Acta Anat. 156, 123–131 (1996).

    CAS  PubMed  Google Scholar 

  152. Bohorquez, D. V. et al. Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J. Clin. Invest. 125, 782–786 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Bohorquez, D. V. & Liddle, R. A. The gut connectome: making sense of what you eat. J. Clin. Invest. 125, 888–890 (2015).

    PubMed  PubMed Central  Google Scholar 

  154. Beumer, J. & Clevers, H. How the gut feels, smells, and talks. Cell 170, 10–11 (2017).

    CAS  PubMed  Google Scholar 

  155. Bohorquez, D. V. et al. An enteroendocrine cell-enteric glia connection revealed by 3D electron microscopy. PLOS One 9, e89881 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Kentish, S. J. et al. Altered gastric vagal mechanosensitivity in diet-induced obesity persists on return to normal chow and is accompanied by increased food intake. Int. J. Obes. 38, 636–642 (2014).

    CAS  Google Scholar 

  158. Kentish, S. J. et al. Gastric vagal afferent modulation by leptin is influenced by food intake status. J. Physiol. 591, 1921–1934 (2013).

    CAS  PubMed  Google Scholar 

  159. Mazda, T., Yamamoto, H., Fujimura, M. & Fujimiya, M. Gastric distension-induced release of 5-HT stimulates c-fos expression in specific brain nuclei via 5-HT3 receptors in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol. 287, G228–G235 (2004).

    CAS  PubMed  Google Scholar 

  160. Blackshaw, L. A. & Grundy, D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J. Auton. Nerv. Syst. 45, 41–50 (1993).

    CAS  PubMed  Google Scholar 

  161. Li, H. et al. Modulation of murine gastric vagal afferent mechanosensitivity by neuropeptide W. Acta Physiol. 209, 179–191 (2013).

    Google Scholar 

  162. Page, A. J. et al. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1376–G1384 (2007).

    CAS  PubMed  Google Scholar 

  163. Mathis, C., Moran, T. H. & Schwartz, G. J. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients. Am. J. Physiol. 274, R280–R286 (1998).

    CAS  PubMed  Google Scholar 

  164. Phillips, R. J. & Powley, T. L. Gastric volume rather than nutrient content inhibits food intake. Am. J. Physiol. 271, R766–R769 (1996).

    CAS  PubMed  Google Scholar 

  165. Plamboeck, A. et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–G1127 (2013).

    CAS  PubMed  Google Scholar 

  166. Williams, D. L., Baskin, D. G. & Schwartz, M. W. Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 150, 1680–1687 (2009).

    CAS  PubMed  Google Scholar 

  167. Krieger, J.-P. et al. Knockdown of GLP-1 Receptors in vagal afferents affects normal food intake and glycemia. Diabetes 65, 34–43 (2016).

    CAS  PubMed  Google Scholar 

  168. Iwasaki, Y. et al. GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat. Commun. 9, 113 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Date, Y. et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab. 4, 323–331 (2006).

    CAS  PubMed  Google Scholar 

  170. Asakawa, A. et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology 120, 337–345 (2001).

    CAS  PubMed  Google Scholar 

  171. Arnold, M., Mura, A., Langhans, W. & Geary, N. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat. J. Neurosci. 26, 11052–11060 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Okada, T. et al. Analysis of peripheral ghrelin signaling via the vagus nerve in ghrelin receptor-restored GHSR-null mice. Neurosci. Lett. 681, 50–55 (2018).

    CAS  PubMed  Google Scholar 

  173. Blackshaw, L. A. & Grundy, D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J. Auton. Nerv. Syst. 31, 191–201 (1990).

    CAS  PubMed  Google Scholar 

  174. de Lartigue, G. et al. EGR1 Is a target for cooperative interactions between cholecystokinin and leptin, and inhibition by ghrelin, in vagal afferent neurons. Endocrinology 151, 3589–3599 (2010).

    PubMed  PubMed Central  Google Scholar 

  175. Date, Y. et al. Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology 146, 3518–3525 (2005).

    CAS  PubMed  Google Scholar 

  176. Burdyga, G. et al. Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 124, 129–139 (2003).

    CAS  PubMed  Google Scholar 

  177. Ronveaux, C. C., Tome, D. & Raybould, H. E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J. Nutr. 145, 672–680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ueno, H. & Nakazato, M. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J. Diabetes Investig. 7, 812–818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chelikani, P. K., Haver, A. C. & Reidelberger, R. D. Ghrelin attenuates the inhibitory effects of glucagon-like peptide-1 and peptide YY(3–36) on food intake and gastric emptying in rats. Diabetes 55, 3038–3046 (2006).

    CAS  PubMed  Google Scholar 

  180. Christianson, J. A., Traub, R. J. & Davis, B. M. Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat. J. Comp. Neurol. 494, 246–259 (2006).

    PubMed  Google Scholar 

  181. Zhong, F., Christianson, J. A., Davis, B. M. & Bielefeldt, K. Dichotomizing axons in spinal and vagal afferents of the mouse stomach. Dig. Dis. Sci. 53, 194–203 (2008).

    PubMed  Google Scholar 

  182. Prechtl, J. C. & Powley, T. L. The fiber composition of the abdominal vagus of the rat. Anat. Embryol. 181, 101–115 (1990).

    CAS  Google Scholar 

  183. Egerod, K. L. et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol. Metab. 12, 62–75 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Debanne, D. Information processing in the axon. Nat. Rev. Neurosci. 5, 304–316 (2004).

    CAS  PubMed  Google Scholar 

  185. Kopysova, I. L. & Debanne, D. Critical role of axonal A-type K+ channels and axonal geometry in the gating of action potential propagation along CA3 pyramidal cell axons: a simulation study. J. Neurosci. 18, 7436–7451 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Debanne, D., Guérineau, N., Gähwiler, B. & Thompson, S. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature 389, 286–289 (1997).

    CAS  PubMed  Google Scholar 

  187. Daly, D. M., Park, S. J., Valinsky, W. C. & Beyak, M. J. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J. Physiol. 589, 2857–2870 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Naznin, F. et al. Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J. Endocrinol. 226, 81–92 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Gil, K., Bugajski, A., Kurnik, M., Zaraska, W. & Thor, P. Physiological and morphological effects of long-term vagal stimulation in diet induced obesity in rats. J. Physiol. Pharmacol. 60 (Suppl. 3), 61–66 (2009).

    PubMed  Google Scholar 

  190. Gil, K., Bugajski, A. & Thor, P. Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646 (2011).

    CAS  PubMed  Google Scholar 

  191. Burneo, J. G., Faught, E., Knowlton, R., Morawetz, R. & Kuzniecky, R. Weight loss associated with vagus nerve stimulation. Neurology 59, 463–464 (2002).

    CAS  PubMed  Google Scholar 

  192. Camilleri, M. et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143, 723–731 (2008).

    CAS  PubMed  Google Scholar 

  193. Camilleri, M. et al. Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device. Surg. Obes. Relat. Dis. 5, 224–229; discussion 229–230 (2009).

    PubMed  Google Scholar 

  194. de Lartigue, G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594, 5791–5815 (2016).

    PubMed  PubMed Central  Google Scholar 

  195. Browning, K. N., Fortna, S. R. & Hajnal, A. Roux-en-Y gastric bypass reverses the effects of diet-induced obesity to inhibit the responsiveness of central vagal motoneurones. J. Physiol. 591, 2357–2372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Imeryuz, N. et al. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol. 273, G920–G927 (1997).

    CAS  PubMed  Google Scholar 

  197. Hayes, M. R. et al. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1479–R1485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Plamboeck, A. et al. Characterisation of oral and i.v. glucose handling in truncally vagotomised subjects with pyloroplasty. Eur. J. Endocrinol. 169, 187–201 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Lam, T. K. Neuronal regulation of homeostasis by nutrient sensing. Nat. Med. 16, 392–395 (2010).

    CAS  PubMed  Google Scholar 

  200. Kokorovic, A. et al. Duodenal mucosal protein kinase C-delta regulates glucose production in rats. Gastroenterology 141, 1720–1727 (2011).

    CAS  PubMed  Google Scholar 

  201. Breen, D. M. et al. Duodenal PKC-delta and cholecystokinin signaling axis regulates glucose production. Diabetes 60, 3148–3153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Rasmussen, B. A. et al. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology 142, 834–843 (2012).

    CAS  PubMed  Google Scholar 

  203. Cheung, G. W., Kokorovic, A., Lam, C. K., Chari, M. & Lam, T. K. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 10, 99–109 (2009).

    CAS  PubMed  Google Scholar 

  204. Yang, M. et al. Duodenal GLP-1 signaling regulates hepatic glucose production through a PKC-delta-dependent neurocircuitry. Cell Death Dis. 8, e2609 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Vardarli, I., Arndt, E., Deacon, C. F., Holst, J. J. & Nauck, M. A. Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 63, 663–674 (2014).

    CAS  PubMed  Google Scholar 

  206. Maida, A., Lamont, B. J., Cao, X. & Drucker, D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-alpha in mice. Diabetologia 54, 339–349 (2011).

    CAS  PubMed  Google Scholar 

  207. Bahne, E. et al. Involvement of glucagon-like peptide-1 in the glucose-lowering effect of metformin. Diabetes Obes. Metab. 18, 955–961 (2016).

    CAS  PubMed  Google Scholar 

  208. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Florez, H. et al. Impact of metformin-induced gastrointestinal symptoms on quality of life and adherence in patients with type 2 diabetes. Postgrad. Med. 122, 112–120 (2010).

    PubMed  Google Scholar 

  211. Stepensky, D., Friedman, M., Srour, W., Raz, I. & Hoffman, A. Preclinical evaluation of pharmacokinetic-pharmacodynamic rationale for oral CR metformin formulation. J. Control Release 71, 107–115 (2001).

    CAS  PubMed  Google Scholar 

  212. Stepensky, D., Friedman, M., Raz, I. & Hoffman, A. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab. Dispos. 30, 861–868 (2002).

    CAS  PubMed  Google Scholar 

  213. Cote, C. D. et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat. Med. 21, 498–505 (2015).

    CAS  PubMed  Google Scholar 

  214. Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Buse, J. B. et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39, 198–205 (2016).

    CAS  PubMed  Google Scholar 

  216. Waget, A. et al. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152, 3018–3029 (2011).

    PubMed  Google Scholar 

  217. Troy, S. et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 8, 201–211 (2008).

    CAS  PubMed  Google Scholar 

  218. Burcelin, R., Serino, M. & Cabou, C. A role for the gut-to-brain GLP-1-dependent axis in the control of metabolism. Curr. Opin. Pharmacol. 9, 744–752 (2009).

    CAS  PubMed  Google Scholar 

  219. Niijima, A. Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. J. Physiol. 332, 315–323 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Nakabayashi, H., Nishizawa, M., Nakagawa, A., Takeda, R. & Niijima, A. Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am. J. Physiol. 271, E808–E813 (1996).

    CAS  PubMed  Google Scholar 

  221. Burcelin, R., Da Costa, A., Drucker, D. & Thorens, B. Glucose competence of the hepatoportal vein sensor requires the presence of an activated glucagon-like peptide-1 receptor. Diabetes 50, 1720–1728 (2001).

    CAS  PubMed  Google Scholar 

  222. Holst, J. J. & Deacon, C. F. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia 48, 612–615 (2005).

    CAS  PubMed  Google Scholar 

  223. Winer, D. A., Winer, S., Dranse, H. J. & Lam, T. K. Immunologic impact of the intestine in metabolic disease. J. Clin. Invest. 127, 33–42 (2017).

    PubMed  PubMed Central  Google Scholar 

  224. Schenk, S., Saberi, M. & Olefsky, J. M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Lee, Y. S. et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes 60, 2474–2483 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Luck, H. et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21, 527–542 (2015).

    CAS  PubMed  Google Scholar 

  227. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    CAS  PubMed  Google Scholar 

  228. Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21, 159–165 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Trabelsi, M. S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015).

    PubMed  Google Scholar 

  230. Marina, A. L. et al. Colesevelam improves oral but not intravenous glucose tolerance by a mechanism independent of insulin sensitivity and beta-cell function. Diabetes Care 35, 1119–1125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Paulino, G. et al. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab. 296, E898–E903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Burdyga, G. et al. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci. 24, 2708–2715 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Broberger, C., Holmberg, K., Kuhar, M. J. & Hokfelt, T. Cocaine- and amphetamine-regulated transcript in the rat vagus nerve: a putative mediator of cholecystokinin-induced satiety. Proc. Natl Acad. Sci. USA 96, 13506–13511 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Sternini, C. et al. Expression of cholecystokinin A receptors in neurons innervating the rat stomach and intestine. Gastroenterology 117, 1136–1146 (1999).

    CAS  PubMed  Google Scholar 

  235. Broberger, C., Holmberg, K., Shi, T. J., Dockray, G. & Hokfelt, T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res. 903, 128–140 (2001).

    CAS  PubMed  Google Scholar 

  236. Patterson, L. M., Zheng, H. & Berthoud, H. R. Vagal afferents innervating the gastrointestinal tract and CCKA-receptor immunoreactivity. Anat. Rec. 266, 10–20 (2002).

    PubMed  Google Scholar 

  237. Burdyga, G. et al. Cholecystokinin regulates expression of Y2 receptors in vagal afferent neurons serving the stomach. J. Neurosci. 28, 11583–11592 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Zarbin, M. A., Wamsley, J. K., Innis, R. B. & Kuhar, M. J. Cholecystokinin receptors: presence and axonal flow in the rat vagus nerve. Life Sci. 29, 697–705 (1981).

    CAS  PubMed  Google Scholar 

  239. Nefti, W., Chaumontet, C., Fromentin, G., Tome, D. & Darcel, N. A high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1681–R1686 (2009).

    CAS  PubMed  Google Scholar 

  240. Ghilardi, J. R., Allen, C. J., Vigna, S. R., McVey, D. C. & Mantyh, P. W. Cholecystokinin and neuropeptide Y receptors on single rabbit vagal afferent ganglion neurons: site of prejunctional modulation of visceral sensory neurons. Brain Res. 633, 33–40 (1994).

    CAS  PubMed  Google Scholar 

  241. Lin, C. W. & Miller, T. R. Both CCK-A and CCK-B/gastrin receptors are present on rabbit vagus nerve. Am. J. Physiol. 263, R591–R595 (1992).

    CAS  PubMed  Google Scholar 

  242. Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2014).

    CAS  PubMed  Google Scholar 

  243. Sakata, I. et al. Growth hormone secretagogue receptor expression in the cells of the stomach-projected afferent nerve in the rat nodose ganglion. Neurosci. Lett. 342, 183–186 (2003).

    CAS  PubMed  Google Scholar 

  244. Heldsinger, A. et al. Ghrelin induces leptin resistance by activation of suppressor of cytokine signaling 3 expression in male rats: implications in satiety regulation. Endocrinology 155, 3956–3969 (2014).

    PubMed  PubMed Central  Google Scholar 

  245. Koda, S. et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    CAS  PubMed  Google Scholar 

  246. De Lartigue, G. et al. Cocaine- and amphetamine-regulated transcript mediates the actions of cholecystokinin on rat vagal afferent neurons. Gastroenterology 138, 1479–1490 (2010).

    PubMed  Google Scholar 

  247. Li, H. et al. Neuropeptide W modulation of gastric vagal afferent mechanosensitivity: impact of age and sex. Peptides 71, 141–148 (2015).

    CAS  PubMed  Google Scholar 

  248. Yang, H. et al. Peripheral secretin-induced Fos expression in the rat brain is largely vagal dependent. Neuroscience 128, 131–141 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.M.Z.W. is supported by a postdoctoral fellowship from the Banting and Best Diabetes Centre. H.J.D. is supported by Canadian Institutes of Health Research (CIHR) and Diabetes Canada postdoctoral fellowships. Part of the work discussed in this Review conducted by the Lam laboratory was supported by a CIHR Foundation Grant to T.K.T.L. (FDN-143204). T.K.T.L. holds the John Kitson McIvor (1915–1942) Endowed Chair in Diabetes Research and the Canada Research Chair in Obesity at the Toronto General Hospital Research Institute and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony K. T. Lam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waise, T.M.Z., Dranse, H.J. & Lam, T.K.T. The metabolic role of vagal afferent innervation. Nat Rev Gastroenterol Hepatol 15, 625–636 (2018). https://doi.org/10.1038/s41575-018-0062-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0062-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing