Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alternative splicing in prostate cancer

Abstract

Androgen receptor (AR) splice variants (AR-Vs) have been implicated in the development and progression of metastatic prostate cancer. AR-Vs are truncated isoforms of the AR, a subset of which lack a ligand-binding domain and remain constitutively active in the absence of circulating androgens, thus promoting cancer cell proliferation. Consequently, AR-Vs have been proposed to contribute not only to resistance to anti-androgen therapies but also to resistance to radiotherapy in patients receiving combination therapy by promoting DNA repair. AR-Vs, such as AR-V7, have been associated with unfavourable clinical outcomes in patients; however, attempts to specifically inhibit or prevent the formation of AR-Vs have, to date, been unsuccessful. Thus, novel therapeutic strategies are desperately needed to address the oncogenic effects of AR-Vs, which can drive lethal forms of prostate cancer. Disruption of alternative splicing through modulation of the spliceosome is one such potential therapeutic avenue; however, our understanding of the biology of the spliceosome and how it contributes to prostate cancer remains incomplete, as reflected in the dearth of spliceosome-targeted therapeutic agents. In this Review, the authors outline the current understanding of the role of the spliceosome in the progression of prostate cancer and explore the therapeutic utility of manipulating alternative splicing to improve patient care.

Key points

  • Persistent androgen receptor (AR) signalling is fundamental for the development of treatment resistance in prostate cancer and for its progression to lethal castration-resistant prostate cancer (CRPC).

  • Truncated AR splice variants that lack the AR ligand-binding domain (LBD) and remain constitutively active in the absence of androgen ligands are a biologically credible mechanism of treatment resistance in CRPC. These splice variants occur through the process of alternative splicing, which is regulated by the spliceosome.

  • AR splice variant 7 (AR-V7) is the most widely studied AR splice variant and has been associated with both an increased risk of biochemical relapse and inferior overall survival outcomes.

  • Efforts to directly target AR splice variants have proved challenging owing to the loss of the LBD (the target of the currently approved anti-androgen therapies) and the intrinsically disordered nature of the AR amino-terminal domain.

  • Targeting spliceosomal activity to inhibit the generation of AR splice variants represents an attractive alternative therapeutic strategy; however, the complexity of the spliceosome, and a lack of understanding of its biology, has resulted in a paucity of such agents being developed.

  • Further research is urgently required to improve understanding of the splicing abnormalities that contribute to the progression of CRPC, as well as the consequences of inhibiting these factors, before the true utility of these therapies can be realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AR splice variants.
Fig. 2: Summary of constitutive and alternative splicing events.
Fig. 3: Mechanisms through which the spliceosome contributes to tumorigenesis and disease progression in prostate cancer.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Research UK. Prostate cancer mortality statistics (CRUK, 2018).

  3. Huggins, C. et al. Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 43, 209–223 (1941).The authors of this study demonstrate the benefits of ADT in patients with metastatic prostate cancer.

    Article  CAS  Google Scholar 

  4. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCrea, E. et al. Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol. Res. 114, 152–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agoulnik, I. U. & Weigel, N. L. Coactivator selective regulation of androgen receptor activity. Steroids 74, 669–674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karantanos, T., Corn, P. G. & Thompson, T. C. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32, 5501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, C. S., Kokontis, J. & Liao, S. T. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 240, 324–326 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Van Laar, J. H. et al. The human androgen receptor is a 110 kDa protein. Mol. Cell Endocrinol. 63, 39–44 (1989).

    Article  PubMed  Google Scholar 

  10. Shaffer, P. L. et al. Structural basis of androgen receptor binding to selective androgen response elements. Proc. Natl Acad. Sci. USA 101, 4758–4763 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davey, R. A. & Grossmann, M. Androgen receptor structure, function and biology: from bench to bedside. Clin. Biochem. Rev. 37, 3–15 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. Azad, A. A. et al. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat. Rev. Urol. 12, 26–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Cutress, M. L. et al. Structural basis for the nuclear import of the human androgen receptor. J. Cell Sci. 121, 957–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Guo, Z. & Qiu, Y. A new trick of an old molecule: androgen receptor splice variants taking the stage?! Int. J. Biol. Sci. 7, 815–822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hellerstedt, B. A. & Pienta, K. J. The current state of hormonal therapy for prostate cancer. CA Cancer J. Clin. 52, 154–179 (2002).

    Article  PubMed  Google Scholar 

  16. Mohler, J. L. et al. Prostate Cancer. J. Natl Compr. Canc. Netw. 14, 19–30 (2016).

    Article  PubMed  Google Scholar 

  17. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).This is a phase III clinical trial that demonstrates that abiraterone acetate prolongs overall survival among patients with metastatic CRPC who have previously received chemotherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).This is a phase III clinical trial that demonstrates that enzalutamide significantly prolongs the survival of men with metastatic CRPC after chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  20. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Machiels, J. P. et al. Prospective randomized study comparing docetaxel, estramustine, and prednisone with docetaxel and prednisone in metastatic hormone-refractory prostate cancer. J. Clin. Oncol. 26, 5261–5268 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).This is a randomized controlled trial among men with locally advanced or metastatic prostate cancer that demonstrates that ADT plus abiraterone and prednisolone is associated with significantly higher rates of overall and failure-free survival than ADT alone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fizazi, K. et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N. Engl. J. Med. 377, 352–360 (2017).This is a double-blind, placebo-controlled, phase III trial that reports that addition of abiraterone acetate and prednisone to ADT significantly increases overall survival and radiographic progression-free survival in men with newly diagnosed, metastatic, castration-sensitive prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  25. Marques, R. B. et al. Androgen receptor modifications in prostate cancer cells upon long-termandrogen ablation and antiandrogen treatment. Int. J. Cancer 117, 221–229 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Dehm, S. M. et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008).The authors of this study provide the first evidence of the existence of truncated AR isoforms lacking the carboxy-terminal domain in 22Rv1 prostate cancer cell lines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu, C. & Luo, J. Decoding the androgen receptor splice variants. Transl. Androl. Urol. 2, 178–186 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matera, A. G. & Wang, Z. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15, 108–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoskins, A. A. et al. Ordered and dynamic assembly of single spliceosomes. Science 331, 1289–1295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daguenet, E., Dujardin, G. & Valcarcel, J. The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep. 16, 1640–1655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fu, X. D. & Ares, M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation. Nature 444, 580–586 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, J. A., Tang, Z. Z. & Black, D. L. An inducible change in Fox-1/A2BP1 splicing modulates the alternative splicing of downstream neuronal target exons. Genes Dev. 23, 2284–2293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ip, J. Y. et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res. 21, 390–401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weigand, J. E. et al. Hypoxia-induced alternative splicing in endothelial cells. PLOS One 7, e42697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hang, X. et al. Transcription and splicing regulation in human umbilical vein endothelial cells under hypoxic stress conditions by exon array. BMC Genomics 10, 126 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yamamoto, K. et al. Control of the heat stress-induced alternative splicing of a subset of genes by hnRNP K. Genes Cells 21, 1006–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Keller, M. et al. Alternative splicing in tomato pollen in response to heat stress. DNA Res. 24, 205–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Busa, R., Geremia, R. & Sette, C. Genotoxic stress causes the accumulation of the splicing regulator Sam68 in nuclear foci of transcriptionally active chromatin. Nucleic Acids Res. 38, 3005–3018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kornblihtt, A. R. et al. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153 (2013).This is an extensive review of the underlying biology behind the process of splicing.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y. et al. A complex network of factors with overlapping affinities represses splicing through intronic elements. Nat. Struct. Mol. Biol. 20, 36–45 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Wang, Y. et al. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat. Struct. Mol. Biol. 19, 1044–1052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tropp, B. E. Principles of molecular biology. Ch. 14 (Jones & Bartlett Learning, 2014).

  47. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scotti, M. M. & Swanson, M. S. RNA mis-splicing in disease. Nat. Rev. Genet. 17, 19–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Iñiguez, L. P. & Hernández, G. The evolutionary relationship between alternative splicing and gene duplication. Front. Genet. 8, 14 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cuajungco, M. P. et al. Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am. J. Hum. Genet. 72, 749–758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ibrahim, E. C. et al. Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum. Mutat. 28, 41–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stephens, P. J. et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Armenia, A. M. et al. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 50, 645–651 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dvinge, H. et al. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DeBoever, C. et al. Transcriptome sequencing reveals potential mechanism of cryptic 3ʹ splice site selection in SF3B1-mutated cancers. PLoS Comput. Biol. 11, e1004105 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Je, E. M. et al. Mutational analysis of splicing machinery genes SF3B1, U2AF1 and SRSF2 in myelodysplasia and other common tumors. Int. J. Cancer 133, 260–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Busa, R. et al. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 26, 4372–4382 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Bielli, P. et al. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr. Relat. Cancer 18, R91–R102 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Dhillon, A. S. et al. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Paronetto, M. P. et al. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70, 229–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y. et al. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur. Urol. 71, 68–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Beltran, H. et al. Aggressive variants of castration resistant prostate cancer. Clin. Cancer Res. 20, 2846–2850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koh, C. M. et al. MYC and prostate cancer. Genes Cancer 1, 617–628 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ushigome, M. et al. Up-regulation of hnRNP A1 gene in sporadic human colorectal cancers. Int. J. Oncol. 26, 635–640 (2005).

    CAS  PubMed  Google Scholar 

  70. Cui, H. et al. Up-regulation and subcellular localization of hnRNP A2/B1 in the development of hepatocellular carcinoma. BMC Cancer 10, 356 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhou, J. et al. Expression of early lung cancer detection marker: hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer. Lung Cancer 34, 341–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Savage, K. et al. Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol. Cell 54, 445–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Black, A. R., Black, J. D. & Azizkhan-Clifford, J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J. Cell. Physiol. 188, 143–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Narla, G. et al. Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res. 65, 5761–5768 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, X. M. et al. KLF6 loss of function in human prostate cancer progression is implicated in resistance to androgen deprivation. Am. J. Pathol. 181, 1007–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turner, N. & Grose, R. Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer 10, 116–129 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Carstens, R. P. et al. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 15, 3059–3065 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Kwabi-Addo, B., Ozen, M. & Ittmann, M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr. Relat. Cancer 11, 709–724 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).This study demonstrates that AR-V7 expression detected in CTCs from patients with CRPC might be associated with resistance to enzalutamide and abiraterone.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Efstathiou, E. et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur. Urol. 67, 53–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, L. L. et al. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 33, 3140–3150 (2014).The authors of this study demonstrate that ADT-induced splicing factor recruitment to AR pre-mRNA contributes to the increased AR-V7 levels in prostate cancer cells.

    Article  CAS  PubMed  Google Scholar 

  82. Hornberg, E. et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLOS One 6, e19059 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Scher, H. I. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2, 1441–1449 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Scher, H. I. et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur. Urol. 71, 874–882 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Kohli, M. et al. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res. 23, 4704–4715 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Antonarakis, E. et al. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis. 19, 231–241 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu, R. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 72, 3457–3462 (2012).This study provides evidence in support of a shift towards AR splice variant-mediated signalling in a subset of CRPC tumours as the AR LBD is rendered inactive and proposes this as a viable mechanism of drug resistance to CRPC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, Z. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).This study describes three novel AR splice variants that are proposed to serve as prognostic markers to predict patient outcome in response to hormonal therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Luo, J. et al. Role of androgen receptor variants in prostate cancer: report from the 2017 Mission Androgen Receptor Variants Meeting. Eur. Urol. 73, 715–723 (2018).

    Article  PubMed  Google Scholar 

  90. Henzler, C. et al. Truncation and constitutive activation of the androgen receptor by diverse genomic rearrangements in prostate cancer. Nat. Commun. 7, 13668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nadiminty, N. et al. NF-κB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol. Cancer Ther. 14, 1884–1895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Teply, B. A. et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol. 19, 76–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Schweizer, M. T. et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Sci. Transl Med. 7, 269ra2 (2015).This is a novel pilot study that demonstrates PSA responses following androgen-ablative therapies after bipolar androgen therapy, suggesting that this therapy restores sensitivity to ADT.

    PubMed  PubMed Central  Google Scholar 

  94. Vivas-Mejia, P. E. et al. Silencing survivin splice variant 2B leads to antitumor activity in taxane-resistant ovarian cancer. Clin. Cancer Res. 17, 3716–3726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, Y. et al. The BRCA1-δ11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin. Cancer Res. 76, 2778–2790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Litton, J. et al. A phase 3 trial comparing talazoparib, an oral PARP inhibitor, to physician’s choice of therapy in patients with advanced breast cancer and a germline BRCA-mutation. Cancer Res. 78, (Suppl. 4), GS6–GS07 (2018).

    Google Scholar 

  99. Gelmon, K. A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Willems, A. J. et al. Loss of heterozygosity at the BRCA2 locus detected by multiplex ligation-dependent probe amplification is common in prostate cancers from men with a germline BRCA2 mutation. Clin. Cancer Res. 14, 2953–2961 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, C. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 20, 3198–3210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, C. et al. Niclosamide enhances abiraterone treatment via inhibition of androgen receptor variants in castration resistant prostate cancer. Oncotarget 7, 32210–32220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li, Y. et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 73, 483–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Yin, Y. et al. Androgen receptor variants mediate DNA repair after prostate cancer irradiation. Cancer Res. 77, 4745–4754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Watson, P. A. et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc. Natl Acad. Sci. USA 107, 16759–16765 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bernemann, C. et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur. Urol. 71, 1–3 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. To, S. Q. et al. Expression of androgen receptor splice variant 7 or 9 in whole blood does not predict response to androgen-axis-targeting agents in metastatic castration-resistant prostate cancer. Eur. Urol. 73, 818–821 (2013).

    Article  CAS  Google Scholar 

  108. Antonarakis, E. S. et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide. J. Clin. Oncol. 35, 2149–2156 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Welti, J. et al. Analytical validation and clinical qualification of a new immunohistochemical assay for androgen receptor splice variant-7 protein expression in metastatic castration-resistant prostate cancer. Eur. Urol. 70, 599–608 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee, S. C. & Abdel-Wahab, O. Therapeutic targeting of splicing in cancer. Nat. Med. 22, 976–986 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 11, 847–859 (2012).This is an excellent review exploring the biology of alternative splicing and efforts to target the spliceosome therapeutically.

    Article  CAS  PubMed  Google Scholar 

  112. Kaida, D. et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat. Chem. Biol. 3, 576–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Kotake, Y. et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat. Chem. Biol. 3, 570–575 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Furumai, R. et al. Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci. 101, 2483–2489 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Iwata, M. et al. E7107, a new 7-urethane derivative of pladienolide D, displays curative effect against several human tumor xenografts. Cancer Res. 64, (Suppl. 7), 691 (2004).

    Google Scholar 

  116. Eskens, F. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).This is a first-in-class phase I trial that attempts to therapeutically modulate the spliceosome to treat advanced solid malignancies.

    Article  CAS  PubMed  Google Scholar 

  117. Hong, D. S. et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. New Drugs 32, 436–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Prasad, J. et al. Protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell Biol. 19, 6991–7000 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Muraki, M. et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J. Biol. Chem. 279, 24246–24254 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Welti, J. et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration resistant prostate cancer (CRPC). Clin Cancer Res. 24, 3149–3162 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Asangani, I. A. et al. BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol. Cancer Res. 14, 324–331 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aukema, K. G. et al. Small molecule inhibitors of yeast pre-mRNA splicing. ACS Chem. Biol. 4, 759–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Pilch, B. et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res. 61, 6876 (2001).

    CAS  PubMed  Google Scholar 

  125. O’Brien, K. et al. The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J. Biol. Chem. 283, 33147–33154 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chae, Y. K. et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 8, 16052–16074 (2017).

    Article  PubMed  Google Scholar 

  127. Bai, A. et al. GP369, an FGFR2-IIIb-specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res. 70, 7630–7639 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zanetta, C. et al. Molecular therapeutic strategies for spinal muscular atrophies: current and future clinical trials. Clin. Ther. 36, 128–140 (2014).

    Article  PubMed  Google Scholar 

  130. Smith, L. D. et al. Novel splice-switching oligonucleotide promotes BRCA1 aberrant splicing and susceptibility to PARP inhibitor action. Int. J. Cancer 140, 1564–1570 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Sakai, T. et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. I. Taxonomy, fermentation, isolation and screening. J. Antibiot. 57, 173–179 (2004).

    Article  CAS  Google Scholar 

  132. Mizui, Y. et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor activities. J. Antibiot. 57, 188–196 (2004).

    Article  CAS  Google Scholar 

  133. Sakai, Y. et al. GEX1 compounds, novel antitumor antibiotics related to herboxidiene, produced by Streptomyces sp. I. Taxonomy, production, isolation, physicochemical properties and biological activities. J. Antibiot. 55, 855–862 (2002).

    Article  CAS  Google Scholar 

  134. Nakajima, H. et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J. Antibiot. 49, 1204–1211 (1996).

    Article  CAS  Google Scholar 

  135. Albert, B. J. et al. Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J. Am. Chem. Soc. 129, 2648–2659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fukuhara, T. et al. Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc. Natl Acad. Sci. USA 103, 11329–11333 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  137. Araki, S. et al. Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing. PLOS One 10, e0116929 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Vaishampayan, U. N. et al. A phase Ib open-label, dose escalation and expansion study to investigate the safety, pharmacokinetics, pharmacodynamics and clinical activity of GSK525762 in combination with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer. J. Clin. Oncol. 36, (Suppl. 6), TPS391 (2018).

    Article  Google Scholar 

  139. Tsujikawa, L. et al. Preclinical development and clinical validation of a whole blood pharmacodynamic marker assay for the BET bromodomain inhibitor ZEN-3694 in metastatic castration-resistant prostate cancer (mCRPC) patients [abstract LB-057]. Proc. AACR Annual Meeting 77 (2017).

Download references

Acknowledgements

A.P. gratefully acknowledges research funding from Cancer Research UK and the Wellcome Trust. A.S. gratefully acknowledges research funding from the Academy of Medical Sciences, the Medical Research Council, and Prostate Cancer UK. G.V.R. gratefully acknowledges research funding from the US Department of Defense. J.L. gratefully acknowledges research funding from the US Department of Defense Prostate Cancer Research Program (grant W81XWH-15-2-0050) and the US National Institutes of Health (NIH) (grant R01 CA185297). S.R.P. gratefully acknowledges research funding from the Lopker Family Foundation, the National Cancer Institute Center for Strategic Scientific Initiatives (P01CA163227 and P50CA097186), the Prostate Cancer Foundation, the US Department of Defense, Medical Research and Material Command (W81XWH-12-PCRP-TIA and W81XWH-15-2-0052), and the US Department of Veterans Affairs (5I01BX003324). J.S.d.B. gratefully acknowledges research funding from Cancer Research UK, the Movember Foundation, the Prostate Cancer Foundation, Prostate Cancer UK, Stand Up To Cancer, the UK Department of Health through an Experimental Cancer Medicine Centre grant, and the US Department of Defense.

Reviewer information

Nature Reviews Clinical Oncology thanks A. Azad, O. Caffo, and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Johann. S. de Bono.

Ethics declarations

Competing interests

A.P., A.S., J.C.W., A.N., and J.S.d.B. are employees of The Institute of Cancer Research, a not-for-profit research organization and independent college of The University of London, which has a commercial interest in abiraterone. A.P., A.S., J.C.W., A.N., and J.S.d.-B. have no personal financial interests in abiraterone. G.V.R. has acted as a consultant of Astellas, Bayer, Pfizer, and Sanofi; receives research funding from Bayer; and has ownership interest in C-diagnostics EtiraRx and GaudiumRx. J.L. has served as a paid consultant and/or adviser of Janssen, Sanofi, and Sun Pharma; has received research funding from Astellas, Constellation, Gilead, Orion, and Sanofi; and is the lead inventor of a technology that has been licensed to A&G, Qiagen, and Tokai. J.S.d.B. has served as an advisory board member for Astellas, AstraZeneca, Bayer, Genentech, Genmab, GlaxoSmithKline, Janssen, Medivation, Merck MSD, Menarini, Orion Pharma, Pfizer, Sanofi–Aventis, and Serono. S.R.P. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paschalis, A., Sharp, A., Welti, J.C. et al. Alternative splicing in prostate cancer. Nat Rev Clin Oncol 15, 663–675 (2018). https://doi.org/10.1038/s41571-018-0085-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0085-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer