Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation

Abstract

PI3K/AKT pathway activation is thought to be a driving force in metastatic melanomas. Members of the pleckstrin homology (PH) domain leucine-rich repeat protein Ser/Thr specific phosphatase family (PHLPP1 and PHLPP2) can regulate AKT activation. By dephosphorylating specific serine residues in the hydrophobic motif, PHLPP1 and PHLPP2 restrain AKT signalings, thereby regulating cell proliferation and survival. We here show that PHLPP1 expression was significantly downregulated or lost and correlated with metastatic potential in melanoma. Forcing expression of either PHLPP1 or PHLPP2 in melanoma cells inhibited cell proliferation, migration, and colony formation in soft agar; but PHLPP1 had the most profound inhibitory effect on metastasis. Moreover, expression of PH mutant forms of PHLPP1 continued to inhibit metastasis, whereas a phosphatase-dead C-terminal mutant did not. The introduction of activated PHLPP1-specific targets AKT2 or AKT3 also promoted melanoma metastasis, while the non-PHLPP1 target AKT1 did not. AKT2 and AKT3 could even rescue the PHLPP1-mediated inhibition of metastasis. An AKT inhibitor blocked the activity of AKT2 and inhibited AKT2-mediated tumor growth and metastasis in a preclinical mouse model. Our data demonstrate that PHLPP1 functions as a metastasis suppressor through its phosphatase activity, and suggest that PHLPP1 represents a novel diagnostic and therapeutic marker for metastatic melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter T. Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 2009;21:140–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. Protein tyrosine phosphatases in the human genome. Cell 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  3. Julien SG, Dubé N, Hardy S, Tremblay ML. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 2011;11:35–49.

    Article  CAS  PubMed  Google Scholar 

  4. Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature 2001;411:355–65.

    Article  CAS  PubMed  Google Scholar 

  5. Ostman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006;6:307–20.

    Article  PubMed  Google Scholar 

  6. Brazil DP, Hemmings BA. Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem Sci 2001;26:657–64.

    Article  CAS  PubMed  Google Scholar 

  7. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999;13:2905–27.

    Article  CAS  PubMed  Google Scholar 

  8. Davies MA, Stemke-Hale K, Lin E, Tellez C, Deng W, Gopal YN, et al. Integrated molecular and clinical analysis of AKT activation in metastatic melanoma. Clin Cancer Res 2009;15:7538–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res 2004;64:7002–10.

    Article  CAS  PubMed  Google Scholar 

  10. Dai DL, Martinka M, Li G. Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J Clin Oncol 2005;23:1473–82.

    Article  CAS  PubMed  Google Scholar 

  11. Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995;81:727–36.

    Article  CAS  PubMed  Google Scholar 

  12. Scheid MP, Woodgett JR. PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2001;2:760–8.

    Article  CAS  PubMed  Google Scholar 

  13. Woodgett JR. Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 2005;17:150–7.

    Article  CAS  PubMed  Google Scholar 

  14. Bellacosa A, Testa JR, Moore R, Larue L. A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol Ther 2004;3:268–75.

    Article  CAS  PubMed  Google Scholar 

  15. Stambolic V, Woodgett JR. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 2006;16:461–6.

    Article  CAS  PubMed  Google Scholar 

  16. Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ. Akt1 and Akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res 2009;69:5057–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hutchinson J, Jin J, Cardiff RD, Woodgett JR, Muller WJ. Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol Cell Biol 2001;21:2203–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 2005;20:539–50.

    Article  CAS  PubMed  Google Scholar 

  19. Cho JH, Robinson JP, Arave RA, Burnett WJ, Kircher DA, Chen G, et al. AKT1 activation promotes development of melanoma metastases. Cell Rep 2015;13:898–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, et al. Overexpression of AKT2/Protein Kinase Bβ leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003;63:196–206.

    CAS  PubMed  Google Scholar 

  21. Rychahou PG, Kang J, Gulhati P, Doan HQ, Chen LA, Xiao SY, et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA 2008;105:20315–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, et al. The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA 1998;95:13513–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997;275:1943–7.

    Article  CAS  PubMed  Google Scholar 

  24. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012;13:283–96.

    Article  CAS  PubMed  Google Scholar 

  25. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998;280:1614–7.

    Article  CAS  PubMed  Google Scholar 

  26. Molina JR, Agarwal NK, Morales FC, Hayashi Y, Aldape KD, Cote G, et al. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 2012;31:1264–74.

    Article  CAS  PubMed  Google Scholar 

  27. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005;18:13–24.

    Article  CAS  PubMed  Google Scholar 

  28. Brognard J, Sierecki E, Gao T, Newton AC. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 2007;25:917–31.

    Article  CAS  PubMed  Google Scholar 

  29. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 2010;9:1956–67.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 2009;28:994–1004.

    Article  CAS  PubMed  Google Scholar 

  31. Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O’Neill A, et al. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell 2011;20:173–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nitsche C, Edderkaoui M, Moore RM, Eibl G, Kasahara N, Treger J, et al. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation. Gastroenterology 2012;142:377–87.

    Article  CAS  PubMed  Google Scholar 

  33. O’Hayre M, Niederst M, Fecteau JF, Nguyen VM, Kipps TJ, Messmer D, et al. Mechanisms and consequences of the loss of PHLPP1 phosphatase in chronic lymphocytic leukemia (CLL). Leukemia 2012;26:1689–92.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dong L, Jin L, Tseng HY, Wang CY, Wilmott JS, Yosufi B, et al. Oncogenic suppression of PHLPP1 in human melanoma. Oncogene 2014;33:4756–66.

    Article  CAS  PubMed  Google Scholar 

  35. O’Neill AK, Niederst MJ, Newton AC. Suppression of survival signaling pathways by the phosphatase PHLPP. FEBS J 2013;280:572–83.

    Article  PubMed  Google Scholar 

  36. Mann MB, Black MA, Jones DJ, Ward JM, Yew CC, Newberg JY, et al. Transposon mutagenesis identifies genetic drivers of Braf (V600E) melanoma. Nat Genet 2015;47:486–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gao T, Brognard J, Newton AC. The phosphatase PHLPP controls the cellular levels of protein kinase C. J Biol Chem 2008;283:6300–11.

    Article  CAS  PubMed  Google Scholar 

  38. Qiao M, Wang Y, Xu X, Lu J, Dong Y, Tao W, et al. Mst1 is an interacting protein that mediates PHLPPs’ induced apoptosis. Mol Cell 2010;38:512–23.

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Stevens PD, Liu J, Yang H, Wang W, Wang C, et al. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice. Gastroenterology 2014;146:1301–12.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Shu H, Wang Z, Li G, Cui J, Wu H, et al. Loss expression of PHLPP1 correlates with lymph node metastasis and exhibits a poor prognosis in patients with gastric cancer. J Surg Oncol 2013;108:427–32.

    Article  CAS  PubMed  Google Scholar 

  41. Brognard J, Newton AC. PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol Metab 2008;19:223–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Qiao J, Lee S, Paul P, Qiao L, Taylor CJ, Schlegel C, et al. Akt2 regulates metastatic potential in neuroblastoma. PLoS One 2013;8:e56382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Shin SS, Wall BA, Goydos JS, Chen S. AKT2 is a downstream target of metabotropic glutamate receptor 1 (Grm1). Pigment Cell Melanoma Res 2010;23:103–11.

    Article  CAS  PubMed  Google Scholar 

  44. Silva JM, Bulman C, McMahon M. BRAFV600E cooperates with PI3K signaling, independent of AKT, to regulate melanoma cell proliferation. Mol Cancer Res 2014;12:447–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Marsh Durban V, Deuker MM, Bosenberg MW, Phillips W, McMahon M. Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. J Clin Invest 2013;123:5104–18.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Cao J, Heijkants RC, Jochemsen AG, Dogrusöz M, de Lange MJ, van der Velden PA, et al. Targeting of the MAPK and AKT pathways in conjunctival melanoma shows potential synergy. Oncotarget 2016;8:58021–36.

    PubMed  PubMed Central  Google Scholar 

  47. Yu Y, Merlino G. Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res 2002;62:2951–6.

    CAS  PubMed  Google Scholar 

  48. Yu Y, Zeng P, Xiong J, Liu Z, Berger SL, Merlino G. Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic Ezrin gene. PLoS One 2010;5:e12710.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 2004;10:175–81.

    Article  CAS  PubMed  Google Scholar 

  50. Yan J, Yu Y, Wang N, Chang Y, Ying H, Liu W, et al. LFIRE-1/HFREP-1, a liver-specific gene, is frequently downregulated and has growth suppressor activity in hepatocellular carcinoma. Oncogene 2004;23:1939–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding from the NIH intramural research program. We thank Drs. Miriam Anver, Julia Zhang and Hong Sheng for assistance with tissue microarray and immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Dai, M., Lu, A. et al. PHLPP1 mediates melanoma metastasis suppression through repressing AKT2 activation. Oncogene 37, 2225–2236 (2018). https://doi.org/10.1038/s41388-017-0061-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0061-7

This article is cited by

Search

Quick links