Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer

Abstract

Non-small cell lung cancer (NSCLC) is one of the most common and malignant carcinoma worldwide, and the incidence and mortality are increasing rapidly. Immunotherapy targeting programmed death 1/programmed death ligand 1 (PD-L1) signaling has shown prominent clinical effects in treating NSCLC; however, a poor understanding of the associated regulating molecular mechanisms of PD-L1 has become one of the biggest obstacles for further improving efficacy. Bridging integrator-1 (BIN1) can regulate numerous cancer-related molecules to exert multiple tumor-suppressing effects by either interacting or not interacting with c-MYC. In the present study, we observed that there exists a negative correlation between the expression of PD-L1 and BIN1 in NSCLC tissues. The expression levels of BIN1 and PD-L1 were significantly related to the tumor, lymph node and metastasis grade (TNM) stage, invasion range and lymph node metastasis. Simultaneously, for NSCLC patients, the expression statuses of BIN1 and PD-L1 might be independent prognostic factors. Furthermore, the expression of tumor-infiltrating lymphocytes was positively associated with BIN1 expression and negatively related to PD-L1 expression in NSCLC tissues. Importantly, we showed that PD-L1 was under the control of BIN1. In addition, the overexpression of BIN1 could inhibit the c-MYC and epithelial growth factor receptor (EGFR)-dependent PD-L1 expression and reverse the suppressive immuno-microenvironment in vivo. Taken together, our findings indicated that BIN1 restoration in NSCLC could reverse PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/mitogen-activated protein kinase pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dunn GP, Old LJ, Schreiber RD . The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137–148.

    Article  CAS  PubMed  Google Scholar 

  2. Dunn GP, Old LJ, Schreiber RD . The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22: 329–360.

    Article  CAS  PubMed  Google Scholar 

  3. Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR et al. Non-small cell lung cancer, version 2.2013. J Natl Compr Canc Netw 2013; 11: 645–653.

    Article  PubMed  Google Scholar 

  4. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG . High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 2011; 28: 682–688.

    Article  CAS  PubMed  Google Scholar 

  5. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Orozco N, Wang YH, Yagita H, Dong C . Cutting Edge: programmed death (PD) ligand-1/PD-L1 is required for CD8+T cell tolerance to tissue antigens. J Immunol 2006; 177: 8291–8295.

    Article  CAS  PubMed  Google Scholar 

  7. Colwell J . Is PD-L1 expression a biomarker of response? Cancer Discov 2015; 5: 1232.

    Article  PubMed  Google Scholar 

  8. Fusi A, Festino L, Botti G, Masucci G, Melero I, Lorigan P et al. PD-L1 expression as a potential predictive biomarker. Lancet Oncol 2015; 16: 1285–1287.

    Article  PubMed  Google Scholar 

  9. Casey SC, Tong L, Do R, Walz S, Fitzgerald KN, Gouw AM et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 2016; 352: 227–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected non-small-cell-lung cancer. Ann Oncol 2014; 25: 1935–1940.

    Article  CAS  PubMed  Google Scholar 

  11. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 2013; 3: 1355–1363.

    Article  CAS  PubMed  Google Scholar 

  12. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol 2015; 10: 910–923.

    Article  CAS  PubMed  Google Scholar 

  13. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC . Bin1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 1996; 14: 69–77.

    Article  CAS  PubMed  Google Scholar 

  14. Prokic I, Cowling BS, Laporte J . Amphiphysin 2 (Bin1) in physiology and diseases. J Mol Med (Berl) 2014; 92: 453–463.

    Article  CAS  Google Scholar 

  15. Tan MS, Yu JT, Tan L . Bridging integrator 1 (Bin1): form, function, and Alzheimer’s disease. Trends Mol Med 2013; 19: 594–603.

    Article  CAS  PubMed  Google Scholar 

  16. Ge K, Duhadaway J, Sakamuro D, Wechsler-Reya R, Reynolds C, Prendergast GC . Losses of the tumor suppressor Bin1 in breast carcinoma are frequent and reflect deficits in programmed cell death capacity. Int J Cancer 2000; 85: 376–383.

    Article  CAS  PubMed  Google Scholar 

  17. Pan K, Liang XT, Zhang HK, Zhao JJ, Wang DD, Li JJ et al. Characterization of bridging integrator 1 (Bin1) as a potential tumor suppressor and prognostic marker in hepatocellular carcinoma. Mol Med 2012; 18: 507–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia Y, Wang H, Wang Y, Wang T, Wang M, Ma M et al. Low expression of Bin1, along with high expression of IDO in tumor tissue and draining lymph nodes, are predictors of poor prognosis for esophageal squamous cell cancer patients. Int J Cancer 2015; 137: 1095–1106.

    Article  CAS  PubMed  Google Scholar 

  19. Barekati Z, Radpour R, Lu Q, Bitzer J, Zheng H, Toniolo P et al. Methylation signature of lymph node metastases in breast cancer patients. BMC Cancer 2012; 12: 244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Telfer JF, Urquhart J, Crouch DH . Suppression of MEK/ERK signalling by Myc: role of Bin-1. Cell Signal 2005; 17: 701–708.

    Article  CAS  PubMed  Google Scholar 

  21. Elliott K, Sakamuro D, Basu A, Du W, Wunner W, Staller P et al. Bin1 functionally interacts with Myc in cells and inhibits cell proliferation by multiple mechanisms. Oncogene 1999; 18: 3564–3573.

    Article  CAS  PubMed  Google Scholar 

  22. Prendergast GC . Mechanisms of apoptosis by c-Myc. Oncogene 1999; 18: 2967–2987.

    Article  CAS  PubMed  Google Scholar 

  23. Schalper KA, Velcheti V, Carvajal D, Wimberly H, Brown J, Pusztai L et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 2014; 20: 2773–2782.

    Article  CAS  PubMed  Google Scholar 

  24. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC . Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 2005; 11: 312–319.

    Article  CAS  PubMed  Google Scholar 

  25. Cassimere EK, Pyndiah S, Sakamuro D . The c-MYC-interacting proapoptotic tumor suppressor Bin1 is a transcriptional target for E2F1 in response to DNA damage. Cell Death Differ 2009; 16: 1641–1653.

    Article  CAS  PubMed  Google Scholar 

  26. Laghi L, Bianchi P, Miranda E, Balladore E, Pacetti V, Grizzi F et al. CD3+ cells at the invasive margin of deeply invading (pT3-T4) colorectal cancer and risk of post-surgical metastasis: a longitudinal study. Lancet Oncol 2009; 10: 877–884.

    Article  CAS  PubMed  Google Scholar 

  27. Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol 2014; 25: 611–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horne ZD, Jack R, Gray ZT, Siegfried JM, Wilson DO, Yousem SA et al. Increased levels of tumor-infiltrating lymphocytes are associated with improved recurrence-free survival in stage 1A non-small-cell lung cancer. J Surg Res 2011; 171: 1–5.

    Article  CAS  PubMed  Google Scholar 

  29. Schumacher K, Haensch W, Roefzaad C, Schlag PM . Prognostic significance of activated CD8 (+) T cell infiltrations within esophageal carcinomas. Cancer Res 2001; 61: 3932–3936.

    CAS  PubMed  Google Scholar 

  30. Wahlin BE, Sander B, Christensson B, Kimby E . CD8+ T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res 2007; 13: 388–397.

    Article  CAS  PubMed  Google Scholar 

  31. Elliott K, Ge K, Du W, Prendergast GC . The c-Myc-interacting adapter protein Bin1 activates a caspase-independent cell death program. Oncogene 2000; 19: 4669–4684.

    Article  CAS  PubMed  Google Scholar 

  32. Tajiri T, Liu X, Thompson PM, Tanaka S, Suita S, Zhao H et al. Expression of a MYCN interacting isoform of the tumor suppressor Bin1 is reduced in neuroblastomas with unfavorable biological features. Clin Cancer Res 2003; 9: 3345–3355.

    CAS  PubMed  Google Scholar 

  33. Chang MY, Boulden J, Katz JB, Wang L, Meyer TJ, Soler AP et al. Bin1 ablation increases susceptibility to cancer during aging, particularly lung cancer. Cancer Res 2007; 67: 7605–7612.

    Article  CAS  PubMed  Google Scholar 

  34. DuHadaway JB, Sakamuro D, Ewert DL, Prendergast GC . Bin1 mediates apoptosis by c-Myc in transformed primary cells. Cancer Res 2001; 61: 3151–3156.

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Huang S, Gong D, Qin Y, Shen Q . Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small-cell lung cancer. Cell Mol Immunol 2010; 7: 389–395.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ . The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007; 8: 239–245.

    Article  CAS  PubMed  Google Scholar 

  37. Nurieva RI, Liu X, Dong C . Yin-Yang of costimulation: crucial controls of immune tolerance and function. Immunol Rev 2009; 229: 88–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005; 65: 1089–1096.

    CAS  PubMed  Google Scholar 

  39. Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res 2016; 76: 1031–1043.

    Article  CAS  PubMed  Google Scholar 

  40. Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 2016; 76: 227–238.

    Article  CAS  PubMed  Google Scholar 

  41. Ota K, Azuma K, Kawahara A, Hattori S, Iwama E, Tanizaki J et al. Induction of PD-L1 expression by the EML4-ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin Cancer Res 2015; 21: 4014–4021.

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Wang J, Jia Y, Wang Y, Han X, Duan Y et al. Methylation decreases the Bin1 tumor suppressor in ESCC and restoration by decitabine inhibits the epithelial mesenchymal transition. Oncotarget 2017; 8: 19661–19673.

    PubMed  PubMed Central  Google Scholar 

  43. Zhao L, Yan X, Shi J, Ren F, Liu L, Sun S et al. Ethanol extract of Forsythia suspensa root induces apoptosis of esophageal carcinoma cells via the mitochondrial apoptotic pathway. Mol Med Rep 2015; 11: 871–880.

    Article  CAS  PubMed  Google Scholar 

  44. Liu L, Shan B, Feng Y . Antitumor effects and immunoregulation mechanisms of IL-23 gene in mouse mammary cancer mediated by retrovirus. Cell Immunol 2009; 258: 181–187.

    Article  CAS  PubMed  Google Scholar 

  45. Ma M, Zhao LM, Yang XX, Shan YN, Cui WX, Chen L et al. p-Hydroxylcinnamaldehyde induces the differentiation of esophageal carcinoma cells via the cAMP-RhoA-MAPK signalling pathway. Sci Rep 2016; 6: 313–315.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81201607), Postdoctoral Fund of China (2013M540883), and Outstanding Youth Foundation of Hebei Province (H2014206320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jia, Y., Zhao, S. et al. BIN1 reverses PD-L1-mediated immune escape by inactivating the c-MYC and EGFR/MAPK signaling pathways in non-small cell lung cancer. Oncogene 36, 6235–6243 (2017). https://doi.org/10.1038/onc.2017.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.217

This article is cited by

Search

Quick links