Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response

Abstract

CD200 acts through its receptor (CD200R) to inhibit excessive inflammation. The role of CD200-CD200R1 interaction in tumor immunity is poorly understood. In this study, we examined the role of CD200-CD200R1 interaction in the progression and metastasis of highly aggressive 4THM murine-breast carcinoma using CD200 transgenic (CD200tg) and CD200R1 knock-out (CD200R1/−) BALB/c mice. 4THM cells induce extensive visceral metastasis and neutrophil infiltration in affected tissues. CD200 overexpression in the host was associated with decreased primary tumor growth and metastasis, whereas lack of CD200R1 expression by host cells was associated with enhanced visceral metastasis. Absence of CD200R1 expression led to decreased tumor-infiltrating-cytotoxic T cells and increased the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. In contrast, CD200 overexpression led to increased tumor-induced interferon-γ and IL-10 response and decreased TNF-α and IL-6 release. Neutrophil infiltration of tissues was markedly decreased in CD200tg animals and increased in CD200R1−/− mice. These findings are contradictory to what has been reported in the EMT6 mouse breast-cancer model. Other distinguishing features of tumor elicited by EMT6 and 4THM cell injections were also examined. Visceral tissues from mice bearing EMT6 tumors showed a lack of neutrophil infiltration and decreased IL-6 release in CD200R1−/− mice. EMT6 and 4THM cells also differed in vimentin expression and in vitro migration rate, which was markedly lower in EMT6 tumors. These results support the hypothesis that CD200 expression can alter immune responses, and can inhibit metastatic growth of tumor cells that induce systemic and local inflammatory response. Increasing CD200 activity/signaling might be an important therapeutic strategy for treatment of aggressive breast carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000; 13: 233–242.

    Article  CAS  PubMed  Google Scholar 

  2. Gorczynski R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA . CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol 2004; 172: 7744–7749.

    Article  CAS  PubMed  Google Scholar 

  3. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 2003; 171: 3034–3046.

    Article  CAS  PubMed  Google Scholar 

  4. Boudakov I, Liu J, Fan N, Gulay P, Wong K, Gorczynski RM . Mice lacking CD200R1 show absence of suppression of lipopolysaccharide-induced tumor necrosis factor-alpha and mixed leukocyte culture responses by CD200. Transplantation 2007; 84: 251–257.

    Article  CAS  PubMed  Google Scholar 

  5. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J . Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumor cells in C57BL/6 mice. Clin Exp Immunol 2001; 126: 220–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS . Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 2008; 180: 699–705.

    Article  CAS  PubMed  Google Scholar 

  7. Memarian A, Nourizadeh M, Masoumi F, Tabrizi M, Emami AH, Alimoghaddam K et al. Upregulation of CD200 is associated with Foxp3+ regulatory T cell expansion and disease progression in acute myeloid leukemia. Tumor Biol 2013; 34: 531–542.

    Article  CAS  Google Scholar 

  8. Wong KK, Brenneman F, Chesney A, Spaner DE, Gorczynski RM . Soluble CD200 is critical to engraft chronic lymphocytic leukemia cells in immunocompromised mice. Cancer Res 2012; 72: 4931–4943.

    Article  CAS  PubMed  Google Scholar 

  9. Rygiel TP, Karnam G, Goverse G, van der Marel AP, Greuter MJ, van Schaarenburg RA et al. CD200-CD200R signaling suppresses anti-tumor responses independently of CD200 expression on the tumor. Oncogene 2012; 31: 2979–2988.

    Article  CAS  PubMed  Google Scholar 

  10. Stumpfova M, Ratner D, Desciak EB, Eliezri YD, Owens DM . The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res 2010; 70: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colmont CS, Benketah A, Reed SH, Hawk NV, Telford WG, Ohyama M et al. CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proc Natl Acad Sci USA 2013; 110: 1434–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Talebian F, Liu JQ, Liu Z, Khattabi M, He Y, Ganju R et al. Melanoma cell expression of CD200 inhibits tumor formation and lung metastasis via inhibition of myeloid cell functions. PLoS One 2012; 7: e31442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  14. Bao L, Haque A, Jackson K, Hazari S, Moroz K, Jetly R, Dash S . Increased expression of P-glycoprotein is associated with doxorubicin chemoresistance in the metastatic 4T1 breast cancer model. Am J Pathol 2011; 178: 838–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Erin N, Akdas BG, Harms JF, Clawson GA . Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. Regul Pept 2008; 151: 35–42.

    Article  CAS  PubMed  Google Scholar 

  16. Erin N, Zhao W, Bylander J, Chase G, Clawson G . Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells. Breast Cancer Res Treat 2006; 99: 351–364.

    Article  CAS  PubMed  Google Scholar 

  17. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA et al. Altered gene expression in breast cancer liver metastases. Int J Cancer 2009; 124: 1503–1516.

    Article  CAS  PubMed  Google Scholar 

  18. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF . Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 2013; 139: 677–689.

    Article  CAS  PubMed  Google Scholar 

  19. Gorczynski RM, Clark DA, Erin N, Khatri I . Role of CD200 expression in regulation of metastasis of EMT6 tumor cells in mice. Breast Cancer Res Treat 2011; 130: 49–60.

    Article  CAS  PubMed  Google Scholar 

  20. Podnos A, Clark DA, Erin N, Yu K, Gorczynski RM . Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat 2012; 136: 117–127.

    Article  CAS  PubMed  Google Scholar 

  21. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290: 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  22. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  23. Dvorak HF . Tumors. wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  24. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 2009; 69: 1302–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murohashi M, Hinohara K, Kuroda M, Isagawa T, Tsuji S, Kobayashi S et al. Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells. Br J Cancer 2010; 102: 206–212.

    Article  CAS  PubMed  Google Scholar 

  26. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamm I, Cardinale I, Krueger J, Murphy JS, May LT, Sehgal PB . Interleukin 6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J Exp Med 1989; 170: 1649–1669.

    Article  CAS  PubMed  Google Scholar 

  29. Studebaker AW, Storci G, Werbeck JL, Sansone P, Sasser AK, Tavolari S et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 2008; 68: 9087–9095.

    Article  CAS  PubMed  Google Scholar 

  30. Lin G, Wang J, Lao X, Wang J, Li L, Li S et al. Interleukin-6 inhibits regulatory T cells and improves the proliferation and cytotoxic activity of cytokine-induced killer cells. J Immunother 2012; 35: 337–343.

    Article  CAS  PubMed  Google Scholar 

  31. Lippitz BE . Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013; 14: e218–e228.

    Article  CAS  PubMed  Google Scholar 

  32. Storci G, Sansone P, Mari S, D'Uva G, Tavolari S, Guarnieri T et al. TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 2010; 225: 682–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu Y, Zhou BP . TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 2010; 102: 639–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geng Y, Chandrasekaran S, Hsu JW, Gidwani M, Hughes AD, King MR . Phenotypic switch in blood: effects of pro-inflammatory cytokines on breast cancer cell aggregation and adhesion. PLoS One 2013; 8: e54959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C et al. Activation of nuclear factor-kappa B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 2006; 13: 607–616.

    Article  CAS  PubMed  Google Scholar 

  36. Street SE, Trapani JA, MacGregor D, Smyth MJ . Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 2002; 196: 129–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corthay A, Skovseth DK, Lundin KU, Rosjo E, Omholt H, Hofgaard PO et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity 2005; 22: 371–383.

    Article  CAS  PubMed  Google Scholar 

  38. Mosser DM, Zhang X . Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008; 226: 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Erdman SE, Rao VP, Poutahidis T, Ihrig MM, Ge Z, Feng Y et al. CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res 2003; 63: 6042–6050.

    CAS  PubMed  Google Scholar 

  40. Kundu N, Beaty TL, Jackson MJ, Fulton AM . Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J Natl Cancer Inst 1996; 88: 536–541.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003; 348: 203–213.

    Article  CAS  PubMed  Google Scholar 

  42. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer 2013; 109: 2705–2713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. West NR, Kost SE, Martin SD, Milne K, Deleeuw RJ, Nelson BH et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer 2013; 108: 155–162.

    Article  CAS  PubMed  Google Scholar 

  44. Gorczynski RM, Chen Z, Diao J, Khatri I, Wong K, Yu K et al. Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 2010; 123: 405–415.

    Article  CAS  PubMed  Google Scholar 

  45. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ et al. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential?. J Pathol 2005; 206: 451–457.

    Article  CAS  PubMed  Google Scholar 

  46. Gorczynski RM, Chen Z, Khatri I, Podnos A, Yu K . Cure of metastatic growth of EMT6 tumor cells in mice following manipulation of CD200:CD200R signaling. Breast Cancer Res Treat 2013; 142: 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 2006; 177: 1526–1533.

    Article  CAS  PubMed  Google Scholar 

  48. Ryckman C, Vandal K, Rouleau P, Talbot M, Philippe A, Tessier PA . Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 2003; 170: 3233–3242.

    Article  CAS  PubMed  Google Scholar 

  49. Maru Y . Which came first tumor cells or macrophages?. Cell Adh Migr 2007; 1: 107–109.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim H, Kang HJ, Lee H, Lee ST, Yu MH, Kim H et al. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J. Proteome Res 2009; 8: 1368–1379.

    Article  CAS  PubMed  Google Scholar 

  51. Hiratsuka S, Ishibashi S, Tomita T, Watanabe A, Akashi-Takamura S, Murakami M et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nat Commun 2013; 4: 1853.

    Article  PubMed  Google Scholar 

  52. Liu Y, Kosaka A, Ikeura M, Kohanbash G, Fellows-Mayle W, Snyder LA, Okada H . Premetastatic soil and prevention of breast cancer brain metastasis. Neuro Oncol 2013; 15: 891–903.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gorczynski RM, Chen Z, He W, Khatri I, Sun Y, Yu K et al. Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 2009; 183: 1560–1568.

    Article  CAS  PubMed  Google Scholar 

  54. Erin N, Boyer PJ, Bonneau RH, Clawson GA, Welch DR . Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Anticancer Res 2004; 24: 1003–1009.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the TÜBİTAK (the scientific and technological research council of Turkey; project no: 109S449); Akdeniz University Research Units, Antalya, Turkey (project no: 2013.12.0103.001); and the Canadian Cancer Society (grant to RMG). We thank Nilüfer Ekinci for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Erin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erin, N., Podnos, A., Tanriover, G. et al. Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34, 3860–3870 (2015). https://doi.org/10.1038/onc.2014.317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.317

This article is cited by

Search

Quick links