Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation

Abstract

The transcription factor GATA3 is a key regulator of mammary gland development and a definitive marker of luminal breast cancer. However, the molecular mechanisms underlying the role of GATA3 in breast carcinogenesis is still not fully understood. We report here that GATA3 promotes cell proliferation and tumorigenesis by facilitating the G1/S transition through its transcription regulation of the CCND1 gene in breast cancer cells. We found that GATA3 is physically associated with poly-ADP ribose polymerase-1 (PARP1), an enzyme modifying nuclear proteins by poly(ADP-ribosyl)ation. We showed that PARP1 acts as a transcription coactivator for GATA3 in breast cancer cells and demonstrated that GATA3 cooperates with PARP1 in transactivation of the CCND1 gene. We demonstrated that PARP1 competes with linker histone H1 to maintain a transcriptional competent chromatin environment for CCND1 gene. Our results unveiled a molecular basis for the coordinated regulation between GATA3 and PARP1 in transcription activation, providing a mechanism for GATA3 in breast carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Patient RK, McGhee JD . The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 2002; 12: 416–422.

    Article  CAS  PubMed  Google Scholar 

  2. Hoene V, Fischer M, Ivanova A, Wallach T, Berthold F, Dame C . GATA factors in human neuroblastoma: distinctive expression patterns in clinical subtypes. Br J Cancer 2009; 101: 1481–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsarovina K, Pattyn A, Stubbusch J, Muller F, van der Wees J, Schneider C et al. Essential role of GATA transcription factors in sympathetic neuron development. Development 2004; 131: 4775–4786.

    Article  CAS  PubMed  Google Scholar 

  4. Imagawa S, Yamamoto M, Miura Y . Negative regulation of the erythropoietin gene expression by the GATA transcription factors. Blood 1997; 89: 1430–1439.

    CAS  PubMed  Google Scholar 

  5. Zhang C, Ye X, Zhang H, Ding M, Deng H . GATA factors induce mouse embryonic stem cell differentiation toward extraembryonic endoderm. Stem Cells Dev 2007; 16: 605–613.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng W, Flavell RA . The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89: 587–596.

    Article  CAS  PubMed  Google Scholar 

  7. Taghon T, Yui MA, Rothenberg EV . Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 2007; 8: 845–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ho IC, Tai TS, Pai SY . GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 2009; 9: 125–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ting CN, Olson MC, Barton KP, Leiden JM . Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 1996; 384: 474–478.

    Article  CAS  PubMed  Google Scholar 

  10. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006; 127: 1041–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kouros-Mehr H, Kim JW, Bechis SK, Werb Z . GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 2008; 20: 164–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007; 9: 201–209.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng R, Blobel GA . GATA transcription factors and cancer. Genes Cancer 2010; 1: 1178–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, et al. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 2005; 65: 11259–11264.

    Article  CAS  PubMed  Google Scholar 

  15. Ciocca V, Daskalakis C, Ciocca RM, Ruiz-Orrico A, Palazzo JP . The significance of GATA3 expression in breast cancer: a 10-year follow-up study. Human Pathol 2009; 40: 489–495.

    Article  CAS  Google Scholar 

  16. Yoon NK, Maresh EL, Shen D, Elshimali Y, Apple S, Horvath S, et al. Higher levels of GATA3 predict better survival in women with breast cancer. Human Pathol 2010; 41: 1794–1801.

    Article  CAS  Google Scholar 

  17. Hoch RV, Thompson DA, Baker RJ, Weigel RJ . GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer 1999; 84: 122–128.

    Article  CAS  PubMed  Google Scholar 

  18. Parikh P, Palazzo JP, Rose LJ, Daskalakis C, Weigel RJ . GATA-3 expression as a predictor of hormone response in breast cancer. J Am Collf Surg 2005; 200: 705–710.

    Article  Google Scholar 

  19. Wilson BJ, Giguere V . Meta-analysis of human cancer microarrays reveals GATA3 is integral to the estrogen receptor alpha pathway. Mol Cancer 2008; 7: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 2008; 13: 141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan W, Cao QJ, Arenas RB, Bentley B, Shao R . GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 2010; 285: 14042–14051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tkocz D, Crawford NT, Buckley NE, Berry FB, Kennedy RD, Gorski JJ et al. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene 2011; 31 (32): 3667–3678.

    Article  PubMed  Google Scholar 

  23. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 2007; 67: 6477–6483.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenfeld MG, Lunyak VV, Glass CK . Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 2006; 20: 1405–1428.

    Article  CAS  PubMed  Google Scholar 

  25. Xu L, Glass CK, Rosenfeld MG . Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 1999; 9: 140–147.

    Article  CAS  PubMed  Google Scholar 

  26. Kurokawa R, Rosenfeld MG, Glass CK . Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biol 2009; 6: 233–236.

    Article  CAS  PubMed  Google Scholar 

  27. Wolffe AP, Guschin D . Review: chromatin structural features and targets that regulate transcription. J Struct Biol 2000; 129: 102–122.

    Article  CAS  PubMed  Google Scholar 

  28. Hwang SS, Lee S, Lee W, Lee GR . GATA-binding protein-3 regulates T helper type 2 cytokine and ifng loci through interaction with metastasis-associated protein 2. Immunology 2010; 131: 50–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Blokzijl A, ten Dijke P, Ibanez CF . Physical and functional interaction between GATA-3 and Smad3 allows TGF-beta regulation of GATA target genes. Curr Biol 2002; 12: 35–45.

    Article  CAS  PubMed  Google Scholar 

  30. Wei G, Abraham BJ, Yagi R, Jothi R, Cui K, Sharma S et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 2011; 35: 299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL . NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 2004; 119: 803–814.

    Article  CAS  PubMed  Google Scholar 

  32. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011; 332: 1443–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouchard VJ, Rouleau M, Poirier GG . PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 2003; 31: 446–454.

    Article  CAS  PubMed  Google Scholar 

  34. Huber A, Bai P, de Murcia JM, de Murcia G . PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development. DNA Repair 2004; 3: 1103–1108.

    Article  CAS  PubMed  Google Scholar 

  35. Krishnakumar R, Kraus WL . The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010; 39: 8–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krishnakumar R, Kraus WL . PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol Cell 2010; 39: 736–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lonn P, van der Heide LP, Dahl M, Hellman U, Heldin CH, Moustakas A . PARP-1 attenuates Smad-mediated transcription. Mol Cell 2010; 40: 521–532.

    Article  PubMed  Google Scholar 

  38. Kraus WL . Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 2008; 20: 294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arnold A, Papanikolaou A . Cyclin D1 in breast cancer pathogenesis. J Clin Oncol 2005; 23: 4215–4224.

    Article  CAS  PubMed  Google Scholar 

  40. Bartkova J, Lukas J, Muller H, Lutzhoft D, Strauss M, Bartek J . Cyclin D1 protein expression and function in human breast cancer. International journal of cancer. J Int Cancer 1994; 57: 353–361.

    Article  CAS  Google Scholar 

  41. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 1994; 54: 1812–1817.

    CAS  PubMed  Google Scholar 

  42. Fantl V, Smith R, Brookes S, Dickson C, Peters G . Chromosome 11q13 abnormalities in human breast cancer. Cancer Surveys 1993; 18: 77–94.

    CAS  PubMed  Google Scholar 

  43. Cipak L, Jantova S . PARP-1 inhibitors: a novel genetically specific agents for cancer therapy. Neoplasma 2010; 57: 401–405.

    Article  CAS  PubMed  Google Scholar 

  44. Tulin A . Re-evaluating PARP1 inhibitor in cancer. Nat Biotechnol 2011; 29: 1078–1079.

    Article  CAS  PubMed  Google Scholar 

  45. Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherman BM . Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 2010; 1: 812–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M . Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 2000; 103: 843–852.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H et al. Differential gene regulation by the SRC family of coactivators. Genes Dev 2004; 18: 1753–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    Article  CAS  PubMed  Google Scholar 

  49. Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL . Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 2008; 319: 819–821.

    Article  CAS  PubMed  Google Scholar 

  50. Ewen ME, Lamb J . The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 2004; 10: 158–162.

    Article  CAS  PubMed  Google Scholar 

  51. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 1994; 369: 669–671.

    Article  CAS  PubMed  Google Scholar 

  52. Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta-Leal A, Quiles-Perez R, Rodriguez-Vargas JM et al. Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr Med Chem 2007; 14: 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  53. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet 2011; 7: e1002080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciccia A, Elledge SJ . The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40: 179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haffner MC, De Marzo AM, Meeker AK, Nelson WG, Yegnasubramanian S . Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin Cancer Res 2011; 17: 3858–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 2006; 312: 1798–1802.

    Article  CAS  PubMed  Google Scholar 

  57. Rojo F, Garcia-Parra J, Zazo S, Tusquets I, Ferrer-Lozano J, Menendez S et al. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann Oncol 2012; 23: 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  58. Li R, Zhang H, Yu W, Chen Y, Gui B, Liang J et al. ZIP: a novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis. EMBO J 2009; 28: 2763–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (81130048 to YS, 81272284 and 91219102 to Lei Shi) from the National Natural Science Foundation of China and grants (973 Program: 2011CB504204 to YS) from the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Shi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, L., Li, X., Liu, L. et al. GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation. Oncogene 33, 3205–3216 (2014). https://doi.org/10.1038/onc.2013.270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.270

Keywords

This article is cited by

Search

Quick links