Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells

Abstract

The c-Jun NH2-terminal kinase (JNK) pathway represents one subgroup of MAP kinases that are activated primarily by cytokines and exposure to environmental stress. Autophagy is a protein-degradation system characterized by the formation of double-membrane vacuoles termed autophagosomes. Autophagy-related gene beclin 1 plays a key role in autophagosome formation. However, the relationships between activation of JNK pathway, autophagy induction and Beclin 1 expression remain elusive. In this study, we used human cancer cell lines CNE2 and Hep3B to investigate the role of JNK-mediated Beclin 1 expression in ceramide-induced autophagic cell death. Ceramide-treated cells exhibited the characteristics of autophagy (that is, acidic vesicular organelle formation and the LC3-II generation). JNK was activated in these two cell lines exposed to ceramide and the phosphorylation of c-Jun also increased. In the meantime, we found that ceramide upregulated Beclin 1 expression in cancer cells. The upregulation of Beclin 1 expression could be blocked by SP600125 (a specific inhibitor of JNK) or a small interfering RNA (siRNA) directed against JNK1/2 or c-Jun. Chromatin immunoprecipitation and luciferase reporter analysis revealed that c-Jun was involved in the regulation of beclin 1 transcription in response to ceramide treatment. In addition, inhibition of JNK activity by SP600125 could inhibit autophagy induction by ceramide. Furthermore, Beclin 1 knockdown by siRNA also inhibited ceramide-mediated autophagic cell death. JNK-mediated Beclin 1 expression was also observed in topotecan-induced autophagy. These data suggest that activation of JNK pathway can mediate Beclin 1 expression, which plays a key role in autophagic cell death in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Abeliovich H, Dunn Jr WA, Kim J, Klionsky DJ . (2000). Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 151: 1025–1034.

    Article  CAS  Google Scholar 

  • Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P et al. (2001). The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276: 35243–35246.

    Article  CAS  Google Scholar 

  • Baehrecke EH . (2003). Autophagic programmed cell death in Drosophila. Cell Death Differ 10: 940–945.

    Article  CAS  Google Scholar 

  • Bergamini E, Cavallini G, Donati A, Gori Z . (2003). The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed Pharmacother 57: 203–208.

    Article  CAS  Google Scholar 

  • Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. (1995). Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270: 2320–2326.

    Article  CAS  Google Scholar 

  • Bursch W . (2001). The autophagosomal–lysosomal compartment in programmed cell death. Cell Death Differ 8: 569–581.

    Article  CAS  Google Scholar 

  • Cao Q, Yu C, Xue R, Hsueh W, Pan P, Chen Z et al. (2007). Autophagy induced by suberoylanilide hydroxamic acid in Hela S3 cells involves inhibition of protein kinase B and up-regulation of Beclin 1. Int J Biochem Cell Biol 40: 272–283.

    Article  Google Scholar 

  • Chu CT, Zhu J, Dagda R . (2007). Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3: 663–666.

    Article  CAS  Google Scholar 

  • Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL et al. (1994). Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 180: 1547–1552.

    Article  CAS  Google Scholar 

  • Cuervo AM . (2004). Autophagy: in sickness and in health. Trends Cell Biol 14: 70–77.

    Article  Google Scholar 

  • Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S . (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64: 4286–4293.

    Article  CAS  Google Scholar 

  • Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64.

    Article  CAS  Google Scholar 

  • Deng R, Li W, Guan Z, Zhou JM, Wang Y, Mei YP et al. (2006). Acetylcholinesterase expression mediated by c-Jun-NH2-terminal kinase pathway during anticancer drug-induced apoptosis. Oncogene 25: 7070–7077.

    Article  CAS  Google Scholar 

  • Ertmer A, Huber V, Gilch S, Yoshimori T, Erfle V, Duyster J et al. (2007). The anticancer drug imatinib induces cellular autophagy. Leukemia 21: 936–942.

    Article  CAS  Google Scholar 

  • Furuya N, Yu J, Byfield M, Pattingre S, Levine B . (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1: 46–52.

    Article  CAS  Google Scholar 

  • Gewies A, Rokhlin OW, Cohen MB . (2000). Ceramide induces cell death in the human prostatic carcinoma cell lines PC3 and DU145 but does not seem to be involved in Fas-mediated apoptosis. Lab Invest 80: 671–676.

    Article  CAS  Google Scholar 

  • Goggel R, Winoto-Morbach S, Vielhaber G, Imai Y, Lindner K, Brade L et al. (2004). PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide. Nat Med 10: 155–160.

    Article  Google Scholar 

  • Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S . (2005). c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood 106: 1382–1391.

    Article  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z et al. (1994). Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180: 525–535.

    Article  CAS  Google Scholar 

  • Hamdi M, Kool J, Cornelissen-Steijger P, Carlotti F, Popeijus HE, van der Burgt C et al. (2005). DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1. Oncogene 24: 7135–7144.

    Article  CAS  Google Scholar 

  • Huwiler A, Xin C, Brust AK, Briner VA, Pfeilschifter J . (2004). Differential binding of ceramide to MEKK1 in glomerular endothelial and mesangial cells. Biochim Biophys Acta 1636: 159–168.

    Article  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728.

    Article  CAS  Google Scholar 

  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S . (2004). Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11: 448–457.

    Article  CAS  Google Scholar 

  • Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T . (2001). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2: 330–335.

    Article  CAS  Google Scholar 

  • Kim MY, Linardic C, Obeid L, Hannun Y . (1991). Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor alpha and gamma-interferon. Specific role in cell differentiation. J Biol Chem 266: 484–489.

    CAS  PubMed  Google Scholar 

  • Kim WH, Choi CH, Kang SK, Kwon CH, Kim YK . (2005). Ceramide induces non-apoptotic cell death in human glioma cells. Neurochem Res 30: 969–979.

    Article  CAS  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S . (2005). The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726–734.

    Article  CAS  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ et al. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316–321.

    Article  CAS  Google Scholar 

  • Larsen KE, Sulzer D . (2002). Autophagy in neurons: a review. Histol Histopathol 17: 897–908.

    CAS  PubMed  Google Scholar 

  • Levine B . (2007). Cell biology: autophagy and cancer. Nature 446: 745–747.

    Article  CAS  Google Scholar 

  • Levine B, Klionsky DJ . (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477.

    Article  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.

    Article  CAS  Google Scholar 

  • Liang XH, Yu J, Brown K, Levine B . (2001). Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 61: 3443–3449.

    CAS  PubMed  Google Scholar 

  • Liu JN, Deng R, Guo JF, Zhou JM, Feng GK, Huang ZS et al. (2007). Inhibition of myc promoter and telomerase activity and induction of delayed apoptosis by SYUIQ-5, a novel G-quadruplex interactive agent in leukemia cells. Leukemia 21: 1300–1302.

    Article  CAS  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B . (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301: 1387–1391.

    Article  CAS  Google Scholar 

  • Mengubas K, Riordan FA, Bravery CA, Lewin J, Owens DL, Mehta AB et al. (1999). Ceramide-induced killing of normal and malignant human lymphocytes is by a non-apoptotic mechanism. Oncogene 18: 2499–2506.

    Article  CAS  Google Scholar 

  • Mizushima N . (2004). Methods for monitoring autophagy. Int J Biochem Cell Biol 36: 2491–2502.

    Article  CAS  Google Scholar 

  • Mochizuki T, Asai A, Saito N, Tanaka S, Katagiri H, Asano T et al. (2002). Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J Biol Chem 277: 2790–2797.

    Article  CAS  Google Scholar 

  • Nishino I . (2003). Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep 3: 64–69.

    Article  Google Scholar 

  • Noda T, Ohsumi Y . (1998). Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273: 3963–3966.

    Article  CAS  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA, Hannun YA . (1993). Programmed cell death induced by ceramide. Science 259: 1769–1771.

    Article  CAS  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26: 9220–9231.

    Article  CAS  Google Scholar 

  • Ogier-Denis E, Codogno P . (2003). Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603: 113–128.

    CAS  PubMed  Google Scholar 

  • Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH . (2003). Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 278: 17636–17645.

    Article  CAS  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P . (2000). Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275: 992–998.

    Article  CAS  Google Scholar 

  • Saftig P, Tanaka Y, Lullmann-Rauch R, von Figura K . (2001). Disease model: LAMP-2 enlightens Danon disease. Trends Mol Med 7: 37–39.

    Article  CAS  Google Scholar 

  • Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A et al. (2004). Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279: 18384–18391.

    Article  CAS  Google Scholar 

  • Seglen PO, Bohley P . (1992). Autophagy and other vacuolar protein degradation mechanisms. Experientia 48: 158–172.

    Article  CAS  Google Scholar 

  • Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S et al. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75–79.

    Article  CAS  Google Scholar 

  • Wang ZH, Xu L, Duan ZL, Zeng LQ, Yan NH, Peng ZL . (2007). Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol 107: 107–113.

    Article  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.

    Article  CAS  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S et al. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502.

    Article  CAS  Google Scholar 

  • Yuan J, Lipinski M, Degterev A . (2003). Diversity in the mechanisms of neuronal cell death. Neuron 40: 401–413.

    Article  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N . (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100: 15077–15082.

    Article  CAS  Google Scholar 

  • Zhang P, Miller BS, Rosenzweig SA, Bhat NR . (1996). Activation of C-jun N-terminal kinase/stress-activated protein kinase in primary glial cultures. J Neurosci Res 46: 114–121.

    Article  CAS  Google Scholar 

  • Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E et al. (2006). Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758: 1864–1884.

    Article  CAS  Google Scholar 

  • Zhou JM, Zhu XF, Lu YJ, Deng R, Huang ZS, Mei YP et al. (2006). Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines. Oncogene 25: 503–511.

    Article  CAS  Google Scholar 

  • Zhu XF, Xie BF, Zhou JM, Feng GK, Liu ZC, Wei XY et al. (2005). Blockade of vascular endothelial growth factor receptor signal pathway and antitumor activity of ON-III (2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone), a component from Chinese herbal medicine. Mol Pharmacol 67: 1444–1450.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Nature Science Foundation of China (30572363, 30873085) and 863 programme (2006AA02A404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-F Zhu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, DD., Wang, LL., Deng, R. et al. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 28, 886–898 (2009). https://doi.org/10.1038/onc.2008.441

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.441

Keywords

This article is cited by

Search

Quick links