Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease

Key Points

  • For over a decade, the 'hallmarks of cancer' have provided a unifying framework for the complex set of cell, tissue and organismal defects associated with malignancy

  • Autosomal dominant polycystic kidney disease (ADPKD) is a relatively common inherited disorder with pathological features that echo those found in cancer

  • A systematic evaluation of ADPKD in the context of the ten cancer hallmarks emphasizes a surprising degree of similarity in signalling defects associated with the disease

  • Two key signalling processes involved in ADPKD—ciliary signalling and control of Ca2+/cAMP and polarized secretion—are not currently thought to be hallmarks of cancer

  • The pattern of conserved and distinct signalling pathways emphasizes important issues relevant to the optimal treatment of patients with ADPKD

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A comparison of the pathological features of ADPKD and kidney cancer.
Figure 2: Signalling and drug targets relevant to the pathogenesis of ADPKD and kidney cancer.

Similar content being viewed by others

References

  1. Torres, V. E. & Harris, P. C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weir, B., Zhao, X. & Meyerson, M. Somatic alterations in the human cancer genome. Cancer Cell 6, 433–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Howlader, N. et al. SEER cancer statistics review, 1975–2011. National Cancer Institute [online], (2014).

  4. Grantham, J. J. Polycystic kidney disease: neoplasia in disguise. Am. J. Kidney Dis. 15, 110–116 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Mestre-Ferrandiz, J., Sussex, J. & Towse, A. The R&D cost of a new medicine. (Office of Health Economics, 2012).

  7. Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs [online], (2014).

  8. Seeger-Nukpezah, T. et al. Inhibiting the HSP90 chaperone slows cyst growth in a mouse model of autosomal dominant polycystic kidney disease. Proc. Natl Acad. Sci. USA 110, 12786–12791 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bukanov, N. O. et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature 444, 949–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Sweeney, W. E. Jr, et al. Src inhibition ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 19, 1331–1341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Cao, Y. et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc. Natl Acad. Sci. USA 106, 21819–21824 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leuenroth, S. J. et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc. Natl Acad. Sci. USA 104, 4389–4394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Omori, S. et al. Extracellular signal-regulated kinase inhibition slows disease progression in mice with polycystic kidney disease. J. Am. Soc. Nephrol. 17, 1604–1614 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Gallagher, A. R., Germino, G. G. & Somlo, S. Molecular advances in autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 17, 118–130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chapin, H. C. & Caplan, M. J. The cell biology of polycystic kidney disease. J. Cell Biol. 191, 701–710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harris, P. C. & Torres, V. E. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J. Clin. Invest. 124, 2315–2324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grantham, J. J., Mulamalla, S. & Swenson-Fields, K. I. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 7, 556–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Grantham, J. J., Geiser, J. L. & Evan, A. P. Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int. 31, 1145–1152 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Nadasdy, T. et al. Proliferative activity of cyst epithelium in human renal cystic diseases. J. Am. Soc. Nephrol. 5, 1462–1468 (1995).

    CAS  PubMed  Google Scholar 

  24. Lantinga-van Leeuwen, I. S. et al. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum. Mol. Genet. 16, 3188–3196 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, S. J. et al. Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochim. Biophys. Acta 1762, 647–655 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Nakanishi, K. et al. Renal dysfunction but not cystic change is ameliorated by neonatal epidermal growth factor in bpk mice. Pediatr. Nephrol. 16, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi, T. et al. Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am. J. Physiol. Renal Physiol. 299, F944–F951 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamaguchi, T. et al. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 57, 1460–1471 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shillingford, J. M. et al. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J. Am. Soc. Nephrol. 21, 489–497 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weimbs, T., Olsan, E. E. & Talbot, J. J. Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. JAKSTAT 2, e23650 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Cowley, B. D. Jr, et al. Elevated proto-oncogene expression in polycystic kidneys of the C57BL/6J (cpk) mouse. J. Am. Soc. Nephrol. 1, 1048–1053 (1991).

    PubMed  Google Scholar 

  33. Nakamura, T. et al. Growth factor gene expression in kidney of murine polycystic kidney disease. J. Am. Soc. Nephrol. 3, 1378–1386 (1993).

    CAS  PubMed  Google Scholar 

  34. Trudel, M., D'Agati, V. & Costantini, F. C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int. 39, 665–671 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Piontek, K. et al. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490–1495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takakura, A. et al. Renal injury is a third hit promoting rapid development of adult polycystic kidney disease. Hum. Mol. Genet. 18, 2523–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shibazaki, S. et al. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum. Mol. Genet. 17, 1505–1516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Norman, J. Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim. Biophys. Acta 1812, 1327–1336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nuzzo, P. V. et al. Periostin: a novel prognostic and therapeutic target for genitourinary cancer? Clin. Genitourin. Cancer 12, 301–311 (2014).

    Article  PubMed  Google Scholar 

  43. Wallace, D. P. et al. Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int. 85, 845–854 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, K. et al. Inactivation of integrin-β1 prevents the development of polycystic kidney disease after the loss of polycystin-1. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013111179.

  45. Seeger-Nukpezah, T. & Golemis, E. A. The extracellular matrix and ciliary signaling. Curr. Opin. Cell Biol. 24, 652–661 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nishio, S. et al. Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J. Clin. Invest. 115, 910–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhou, X. et al. Sirtuin 1 inhibition delays cyst formation in autosomal-dominant polycystic kidney disease. J. Clin. Invest. 123, 3084–3098 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan, L. X. et al. Inhibition of histone deacetylases targets the transcription regulator Id2 to attenuate cystic epithelial cell proliferation. Kidney Int. 81, 76–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Bhunia, A. K. et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Park, J. Y. et al. p21 is decreased in polycystic kidney disease and leads to increased epithelial cell cycle progression: roscovitine augments p21 levels. BMC Nephrol. 8, 12 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Felekkis, K. N. et al. Mutant polycystin-2 induces proliferation in primary rat tubular epithelial cells in a STAT-1/p21-independent fashion accompanied instead by alterations in expression of p57KIP2 and Cdk2. BMC Nephrol. 9, 10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).

  53. Brook-Carter, P. T. et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease—a contiguous gene syndrome. Nat. Genet. 8, 328–332 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Boletta, A. Emerging evidence of a link between the polycystins and the mTOR pathways. Pathogenetics 2, 6 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Varelas, X. et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18, 579–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Habbig, S. et al. NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J. Cell Biol. 193, 633–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ganem, N. J. et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833–848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adams, J. M. & Cory, S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Sayers, T. J. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol. Immunother. 60, 1173–1180 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Marino, G. et al. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Galluzzi, L. et al. Molecular mechanisms of regulated necrosis. Semin. Cell Dev. Biol. 35, 24–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Vanden Berghe, T. et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Fan, L. X. et al. Smac-mimetic-induced epithelial cell death reduces the growth of renal cysts. J. Am. Soc. Nephrol. 24, 2010–2022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goilav, B. Apoptosis in polycystic kidney disease. Biochim. Biophys. Acta 1812, 1272–1280 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Woo, D. Apoptosis and loss of renal tissue in polycystic kidney diseases. N. Engl. J. Med. 333, 18–25 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Veis, D. J. et al. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Hughes, P. et al. Loss of PKD1 and loss of Bcl-2 elicit polycystic kidney disease through distinct mechanisms. Cell Death Differ. 13, 1123–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Yu, W. et al. Polycystin-1 protein level determines activity of the Galpha12/JNK apoptosis pathway. J. Biol. Chem. 285, 10243–10251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tao, Y. et al. Caspase inhibition reduces tubular apoptosis and proliferation and slows disease progression in polycystic kidney disease. Proc. Natl Acad. Sci. USA 102, 6954–6959 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pampliega, O. et al. Functional interaction between autophagy and ciliogenesis. Nature 502, 194–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang, Z. et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 502, 254–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ravichandran, K. & Edelstein, C. L. Polycystic kidney disease: a case of suppressed autophagy? Semin. Nephrol. 34, 27–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Li, X. et al. A tumor necrosis factor-α-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat. Med. 14, 863–868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coschi, C. H. & Dick, F. A. Chromosome instability and deregulated proliferation: an unavoidable duo. Cell. Mol. Life Sci. 69, 2009–2024 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Lopez-Otin, C. et al. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Verdin, E. The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nat. Med. 20, 25–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Roth, M. & Chen, W. Y. Sorting out functions of sirtuins in cancer. Oncogene 33, 1609–1620 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Parker, E. et al. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system. Kidney Int. 72, 157–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schaffner, D. L. et al. Targeting of the rasT24 oncogene to the proximal convoluted tubules in transgenic mice results in hyperplasia and polycystic kidneys. Am. J. Pathol. 142, 1051–1060 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamaguchi, T. et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 279, 40419–40430 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, W. Y. & Kaelin, W. G. Role of VHL gene mutation in human cancer. J. Clin. Oncol. 22, 4991–5004 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Rankin, E. B., Tomaszewski, J. E. & Haase, V. H. Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 66, 2576–2583 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, S. S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl Acad. Sci. USA 111, 16538–16543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Young, A. P. et al. VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat. Cell Biol. 10, 361–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Muller, R. U. et al. The von Hippel Lindau tumor suppressor limits longevity. J. Am. Soc. Nephrol. 20, 2513–2517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mehta, R. et al. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science 324, 1196–1198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pirson, Y. Extrarenal manifestations of autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 17, 173–180 (2010).

    Article  PubMed  Google Scholar 

  91. Bello-Reuss, E., Holubec, E. K. & Rajaraman, S. Angiogenesis in autosomal-dominant polycystic kidney disease. Kidney Int. 60, 37–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Wei, W. et al. Evidence of angiogenesis and microvascular regression in autosomal-dominant polycystic kidney disease kidneys: a corrosion cast study. Kidney Int. 70, 1261–1268 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bernhardt, W. M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tao, Y. et al. VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int. 72, 1358–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Belibi, F. et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am. J. Physiol. Renal Physiol. 300, F1235–F1243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reed, B. Y. et al. Angiogenic growth factors correlate with disease severity in young patients with autosomal dominant polycystic kidney disease. Kidney Int. 79, 128–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, K. et al. Polycystin 1 is required for the structural integrity of blood vessels. Proc. Natl Acad. Sci. USA 97, 1731–1736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Outeda, P. et al. Polycystin signaling is required for directed endothelial cell migration and lymphatic development. Cell Rep. 7, 634–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rowe, I. et al. Impaired glomerulogenesis and endothelial cell migration in Pkd1-deficient renal organ cultures. Biochem. Biophys. Res. Commun. 444, 473–479 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Coxam, B. et al. Pkd1 regulates lymphatic vascular morphogenesis during development. Cell Rep. 7, 623–633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Raina, S. et al. Anti-VEGF antibody treatment accelerates polycystic kidney disease. Am. J. Physiol. Renal Physiol. 301, F773–F783 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Bensinger, S. J. & Christofk, H. R. New aspects of the Warburg effect in cancer cell biology. Semin. Cell Dev. Biol. 23, 352–361 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Rowe, I. & Boletta, A. Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrol. Dial. Transplant. 29, 1480–1486 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Mao, Z., Xie, G. & Ong, A. C. Metabolic abnormalities in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 30, 197–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, X. et al. Targeting of sodium-glucose cotransporters with phlorizin inhibits polycystic kidney disease progression in Han:SPRD rats. Kidney Int. 84, 962–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science 122, 501–514 (1955).

    Article  CAS  PubMed  Google Scholar 

  107. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lukey, M. J., Wilson, K. F. & Cerione, R. A. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med. Chem. 5, 1685–1700 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Lieberman, B. P. et al. PET imaging of glutaminolysis in tumors by 18F-(2S, 4R)4-fluoroglutamine. J. Nucl. Med. 52, 1947–1955 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Werder, A. A. et al. Comparative effects of germfree and ambient environments on the development of cystic kidney disease in CFWwd mice. J. Lab. Clin. Med. 103, 399–407 (1984).

    CAS  PubMed  Google Scholar 

  112. Gardner, K. D. Jr et al. Cytokines in fluids from polycystic kidneys. Kidney Int. 39, 718–724 (1991).

    Article  PubMed  Google Scholar 

  113. Merta, M. et al. Cytokine profile in autosomal dominant polycystic kidney disease. Biochem. Mol. Biol. Int. 41, 619–624 (1997).

    CAS  PubMed  Google Scholar 

  114. Cowley, B. D. Jr et al. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int. 60, 2087–2096 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Karihaloo, A. et al. Macrophages promote cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 22, 1809–1814 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Swenson-Fields, K. I. et al. Macrophages promote polycystic kidney disease progression. Kidney Int. 83, 855–864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mrug, M. et al. Overexpression of innate immune response genes in a model of recessive polycystic kidney disease. Kidney Int. 73, 63–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Zhou, J. et al. Kidney injury accelerates cystogenesis via pathways modulated by heme oxygenase and complement. J. Am. Soc. Nephrol. 23, 1161–1171 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brasier, J. L. & Henske, E. P. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J. Clin. Invest. 99, 194–199 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Torra, R. et al. A loss-of-function model for cystogenesis in human autosomal dominant polycystic kidney disease type 2. Am. J. Hum. Genet. 65, 345–352 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pei, Y. et al. Somatic PKD2 mutations in individual kidney and liver cysts support a “two-hit” model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 10, 1524–1529 (1999).

    CAS  PubMed  Google Scholar 

  122. Knudson, A. G. Jr, Hethcote, H. W. & Brown, B. W. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc. Natl Acad. Sci. USA 72, 5116–5120 (1975).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Woo, Y. M. et al. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum. Genet. 133, 281–297 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Battini, L. et al. Loss of polycystin-1 causes centrosome amplification and genomic instability. Hum. Mol. Genet. 17, 2819–2833 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aboualaiwi, W. A. et al. Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation. Circulation 129, 660–672 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. AbouAlaiwi, W. A. et al. Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation. Hum. Mol. Genet. 20, 354–367 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Li, M. et al. Genomic instability in patients with autosomal-dominant polycystic kidney disease. J. Int. Med. Res. 41, 169–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Reynolds, D. M. et al. Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J. Am. Soc. Nephrol. 10, 2342–2351 (1999).

    CAS  PubMed  Google Scholar 

  129. Aguiari, G. et al., Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J. 18, 884–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Rossetti, S. et al. Autosomal dominant polycystic kidney disease (ADPKD) in an Italian family carrying a novel nonsense mutation and two missense changes in exons 44 and 45 of the PKD1 gene. Am. J. Med. Genet. 65, 155–159 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150, 533–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Choi, H. J. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell 51, 423–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Airik, R. et al. Renal-retinal ciliopathy gene Sdccag8 Regulates DNA damage response signaling. J. Am. Soc. Nephrol. 25, 2573–2583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kaucka, M. et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of B-lymphocyte migration. Cancer Res. 73, 1491–1501 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt–PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Katoh, M. WNT/PCP signaling pathway and human cancer. Oncol. Rep, 14, 1583–1588 (2005).

    CAS  PubMed  Google Scholar 

  137. Cui, C. et al. Wdpcp, a PCP protein required for ciliogenesis, regulates directional cell migration and cell polarity by direct modulation of the actin cytoskeleton. PLoS Biol. 11, e1001720 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lienkamp, S., Ganner, A. & Walz, G. Inversin, Wnt signaling and primary cilia. Differentiation 83, S49–S55 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Wilson, P. D. Apico-basal polarity in polycystic kidney disease epithelia. Biochim. Biophys. Acta 1812, 1239–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Goggolidou, P. Wnt and planar cell polarity signaling in cystic renal disease. Organogenesis 10, 86–95 (2014).

    Article  PubMed  Google Scholar 

  141. Fedeles, S. & Gallagher, A. R. Cell polarity and cystic kidney disease. Pediatr. Nephrol. 28, 1161–1172 (2013).

    Article  PubMed  Google Scholar 

  142. Lancaster, M. A. et al. Impaired Wnt-β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 15, 1046–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Castelli, M. et al. Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat. Commun. 4, 2658 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Boca, M. et al. Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3β-dependent cell–cell mechanical adhesion. Mol. Biol. Cell 18, 4050–4061 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Luyten, A. et al. Aberrant regulation of planar cell polarity in polycystic kidney disease. J. Am. Soc. Nephrol. 21, 1521–1532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pease, J. C. & Tirnauer, J. S. Mitotic spindle misorientation in cancer—out of alignment and into the fire. J. Cell Sci. 124, 1007–1016 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Delaval, B. et al. The cilia protein IFT88 is required for spindle orientation in mitosis. Nat. Cell Biol. 13, 461–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sugiyama, N. et al. The canonical Wnt signaling pathway is not involved in renal cyst development in the kidneys of inv mutant mice. Kidney Int. 79, 957–965 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jonassen, J. A. et al. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation. J. Am. Soc. Nephrol. 23, 641–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nishio, S. et al. Loss of oriented cell division does not initiate cyst formation. J. Am. Soc. Nephrol. 21, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Markoff, A. et al. Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J. Mol. Biol. 369, 954–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Charron, A. J. et al. Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J. Cell Biol. 149, 111–124 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chea, S. W. & Lee, K. B. TGF-β mediated epithelial-mesenchymal transition in autosomal dominant polycystic kidney disease. Yonsei Med. J. 50, 105–111 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Togawa, H. et al. Epithelial-to-mesenchymal transition in cyst lining epithelial cells in an orthologous PCK rat model of autosomal-recessive polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F511–F520 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. You, N. et al. Tg737 signaling is required for hypoxia-enhanced invasion and migration of hepatoma cells. J. Exp. Clin. Cancer Res. 31, 75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nikonova, A. S. et al. Nedd9 restrains renal cystogenesis in Pkd1−/− mice. Proc. Natl Acad. Sci. USA 111, 12859–12864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Elliott, J., Zheleznova, N. N. & Wilson, P. D. c-Src inactivation reduces renal epithelial cell-matrix adhesion, proliferation, and cyst formation. Am. J. Physiol. Cell Physiol. 301, C522–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Barr, M. M. et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr. Biol. 11, 1341–1346 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  PubMed  Google Scholar 

  161. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoder, B. K. et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am. J. Physiol. Renal Physiol. 282, F541–F552 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Frew, I. J. et al. pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J. 27, 1747–1757 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ma, M. et al. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hassounah, N. B., Bunch, T. A. & McDermott, K. M. Molecular pathways: the role of primary cilia in cancer progression and therapeutics with a focus on Hedgehog signaling. Clin. Cancer Res. 18, 2429–2435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Seeger-Nukpezah, T., Little, J. L., Serzhanova, V. & Golemis, E. A. Cilia and cilia-associated proteins in cancer. Drug Discov. Today Dis. Mech. 10, e135–e142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Schraml, P. et al. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod. Pathol. 22, 31–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Emoto, K. et al. Presence of primary cilia in cancer cells correlates with prognosis of pancreatic ductal adenocarcinoma. Hum. Pathol. 45, 817–825 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Hassounah, N. B. et al. Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS ONE 8, e68521 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Menzl, I. et al. Loss of primary cilia occurs early in breast cancer development. Cilia 3, 7 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Plotnikova, O. V., Golemis, E. A. & Pugacheva, E. N. Cell cycle-dependent ciliogenesis and cancer. Cancer Res. 68, 2058–2061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gradilone, S. A. et al. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 73, 2259–2270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kim, S. & Tsiokas, L. Cilia and cell cycle re-entry: more than a coincidence. Cell Cycle 10, 2683–2690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pan, J., Seeger-Nukpezah, T. & Golemis, E. A. The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cell. Mol. Life Sci. 70, 1849–1874 (2013).

    Article  CAS  PubMed  Google Scholar 

  177. Nikonova, A. S. et al. Aurora A kinase (AURKA) in normal and pathological cell division. Cell. Mol. Life Sci. 70, 661–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Pugacheva, E. N. et al. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kaelin, W. G. Jr. . The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin. Cancer Res. 10 (18 Pt 2), 6290S–6295S (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Na, X. et al. Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel-Lindau protein. EMBO J. 22, 4249–4259 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Shen, C. & Kaelin, W. G. Jr. The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18–25 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Kim, S. H. et al. Human enhancer of filamentation 1 Is a mediator of hypoxia-inducible factor-1α-mediated migration in colorectal carcinoma cells. Cancer Res. 70, 4054–4063 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xu, J. et al. VHL inactivation induces HEF1 and Aurora kinase A. J. Am. Soc. Nephrol. 21, 2041–2046 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kuehn, E. W., Walz, G. & Benzing, T. Von hippel-lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res. 67, 4537–4540 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Huseman, R. et al. Macropuncture study of polycystic disease in adult human kidneys. Kidney Int. 18, 375–385 (1980).

    Article  CAS  PubMed  Google Scholar 

  187. Terryn, S. et al. Fluid transport and cystogenesis in autosomal dominant polycystic kidney disease. Biochim. Biophys. Acta 1812, 1314–1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Alper, S. L. Let's look at cysts from both sides now. Kidney Int. 74, 699–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Yamaguchi, T. et al. Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am. J. Kidney Dis. 30, 703–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  190. Wallace, D. P. Cyclic AMP-mediated cyst expansion. Biochim. Biophys. Acta 1812, 1291–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  191. Yamaguchi, T. et al. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 17, 178–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  192. Roderick, H. L. & Cook, S. J. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8, 361–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Gold, M. G., Gonen, T. & Scott, J. D. Local cAMP signaling in disease at a glance. J. Cell Sci. 126, 4537–4543 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Chang, M. Y. & Ong, A. C. Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin. Pract. 120, c25–c34 (2012).

    Article  PubMed  Google Scholar 

  196. FDA Drug Safety Communication: FDA limits duration and usage of Samsca (tolvaptan) due to possible liver injury leading to organ transplant or death. US Department of Health and Human Services [online], (2013).

  197. Sontheimer, H. An unexpected role for ion channels in brain tumor metastasis. Exp. Biol. Med. (Maywood) 233, 779–791 (2008).

    Article  CAS  Google Scholar 

  198. Haas, B. R. & Sontheimer, H. Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion. Cancer Res. 70, 5597–5606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Garzon-Muvdi, T. et al. Regulation of brain tumor dispersal by NKCC1 through a novel role in focal adhesion regulation. PLoS Biol. 10, e1001320 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Johnson, M. D. & O'Connell, M. Na-K-2Cl cotransporter and aquaporin 1 in arachnoid granulations, meningiomas, and meningiomas invading dura. Hum. Pathol. 44, 1118–1124 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. D'Alessandro, G. et al. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis. 4, e773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Verkman, A. S., Hara-Chikuma, M. & Papadopoulos, M. C. Aquaporins—new players in cancer biology. J. Mol. Med. (Berl.) 86, 523–529 (2008).

    Article  CAS  Google Scholar 

  203. Xie, C. et al. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 32, 2282–2291 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. North, W. G. et al. Expression of all known vasopressin receptor subtypes by small cell tumors implies a multifaceted role for this neuropeptide. Cancer Res. 58, 1866–1871 (1998).

    CAS  PubMed  Google Scholar 

  205. Hemal, A. K. et al. Renal cell carcinoma in cases of adult polycystic kidney disease: changing diagnostic and therapeutic implications. Urol. Int. 64, 9–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  206. Keith, D. S. et al. Renal cell carcinoma in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 4, 1661–1669 (1994).

    CAS  PubMed  Google Scholar 

  207. Chen, Y. B. & Tickoo, S. K. Spectrum of preneoplastic and neoplastic cystic lesions of the kidney. Arch. Pathol. Lab. Med. 136, 400–409 (2012).

    Article  PubMed  Google Scholar 

  208. Orskov, B. et al. Changes in causes of death and risk of cancer in Danish patients with autosomal dominant polycystic kidney disease and end-stage renal disease. Nephrol. Dial. Transplant. 27, 1607–1613 (2012).

    Article  PubMed  Google Scholar 

  209. Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. N. Engl. J. Med. 359, 1477–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Bonsib, S. M. Renal cystic diseases and renal neoplasms: a mini-review. Clin. J. Am. Soc. Nephrol. 4, 1998–2007 (2009).

    Article  PubMed  Google Scholar 

  211. Hajj, P. et al. Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Urology 74, 631–634 (2009).

    Article  PubMed  Google Scholar 

  212. Wetmore, J. B. et al. Polycystic kidney disease and cancer after renal transplantation. J. Am. Soc. Nephrol. 25, 2335–2341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ward, C. J. et al. Germline PKHD1 mutations are protective against colorectal cancer. Hum. Genet. 129, 345–349 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gargalionis, A. N. et al. Polycystin-1 and polycystin-2 are involved in the acquisition of aggressive phenotypes in colorectal cancer. Int. J. Cancer 136, 1515–1527 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Shuch, B. et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur. Urol. 67, 85–97 (2014).

    Article  PubMed  Google Scholar 

  216. Srigley, J. R. et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of renal neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013).

    Article  PubMed  Google Scholar 

  217. Martinez, J. R. & Grantham, J. J. Polycystic kidney disease: etiology, pathogenesis, and treatment. Dis. Mon. 41, 693–765 (1995).

    Article  CAS  PubMed  Google Scholar 

  218. Sircar, K. & Tamboli, P. in Kidney Cancer: Principles and Practice (eds. Lara, P. N. Jr & Jonasch, E.) 17–28 (Springer–Verlag, 2012).

    Book  Google Scholar 

  219. Neumann, H. P. & Zbar, B. Renal cysts, renal cancer and von Hippel-Lindau disease. Kidney Int. 51, 16–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  220. Warren, K. S. & McFarlane, J. The Bosniak classification of renal cystic masses. BJU Int. 95, 939–942 (2005).

    Article  PubMed  Google Scholar 

  221. Zhang, J. et al. Diagnosis and treatment of cystic renal cell carcinoma. World J. Surg. Oncol. 11, 158 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ellimoottil, C. et al. New modalities for the evaluation and surveillance of complex renal cysts. J. Urol. 192, 1604–1611 (2014).

    Article  PubMed  Google Scholar 

  223. The National Cancer Institute and National Human Genome Research Institute. The Cancer Genome Atlas [online], (2015).

  224. Bastos, A. P. et al. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J. Am. Soc. Nephrol. 20, 2389–2402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21. (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  227. Young, A. C. et al. Analysis of VHL Gene Alterations and their Relationship to Clinical Parameters in Sporadic Conventional Renal Cell Carcinoma. Clin. Cancer Res. 15, 7582–7592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Nickerson, M. L. et al. Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Surveillance, Epidemiology, and End Results Program. SEER stat fact sheets: kidney and renal pelvis cancer. National Cancer Institute [online], (2014).

  230. Solomon, D. & Schwartz, A. Renal pathology in von Hippel-Lindau disease. Hum. Pathol. 19, 1072–1079 (1988).

    Article  CAS  PubMed  Google Scholar 

  231. Lubensky, I. A. et al. Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel–Lindau disease patients. Am. J. Pathol. 149, 2089–2094 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  233. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

  234. Montani, M. et al. VHL-gene deletion in single renal tubular epithelial cells and renal tubular cysts: further evidence for a cyst-dependent progression pathway of clear cell renal carcinoma in von Hippel–Lindau disease. Am. J. Surg. Pathol. 34, 806–815 (2010).

    Article  PubMed  Google Scholar 

  235. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  236. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pena-Llopis, S. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Duns, G. et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70, 4287–4291 (2010).

    Article  CAS  PubMed  Google Scholar 

  239. Gossage, L. et al. Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosomes Cancer 53, 38–51 (2014).

    Article  CAS  PubMed  Google Scholar 

  240. McDonald, S. A. et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134, 500–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  241. Wright, N. A. Boveri at 100: cancer evolution, from preneoplasia to malignancy. J. Pathol. 234, 146–151 (2014).

    PubMed  Google Scholar 

  242. Foschini, M. P. et al. Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Hum. Pathol. 44, 1310–1319 (2013).

    Article  CAS  PubMed  Google Scholar 

  243. Dotto, G. P. Multifocal epithelial tumors and field cancerization: stroma as a primary determinant. J. Clin. Invest. 124, 1446–1453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  245. Hou, J., Rajagopal, M. & Yu, A. S. Claudins and the kidney. Annu. Rev. Physiol. 75, 479–501 (2013).

    Article  CAS  PubMed  Google Scholar 

  246. Ramos, A. et al. The liver in autosomal dominant polycystic kidney disease. Implications for pathogenesis. Arch. Pathol. Lab. Med. 114, 180–184 (1990).

    CAS  PubMed  Google Scholar 

  247. Yu, A. S. et al. Tight junction composition is altered in the epithelium of polycystic kidneys. J. Pathol. 216, 120–128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Runkle, E. A. & Mu, D. Tight junction proteins: from barrier to tumorigenesis. Cancer Lett. 337, 41–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kwon, M. J. Emerging roles of claudins in human cancer. Int. J. Mol. Sci. 14, 18148–18180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Osunkoya, A. O. et al. Claudin-7 and claudin-8: immunohistochemical markers for the differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma. Hum. Pathol. 40, 206–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  251. Melchers, L. J. et al. Lack of claudin-7 is a strong predictor of regional recurrence in oral and oropharyngeal squamous cell carcinoma. Oral Oncol. 49, 998–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  252. Bornholdt, J. et al. The level of claudin-7 is reduced as an early event in colorectal carcinogenesis. BMC Cancer 11, 65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Choi, W. et al. Intrinsic basal and luminal subtypes of muscle-invasive bladder cancer. Nat. Rev. Urol. 11, 400–410 (2014).

    Article  CAS  PubMed  Google Scholar 

  255. Harten, S. K. et al. Regulation of renal epithelial tight junctions by the von Hippel–Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol. Biol. Cell 20, 1089–1101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. De Nardo, D., De Nardo, C. M. & Latz, E. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am. J. Pathol. 184, 42–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Chang, A., Ko, K. & Clark, M. R. The emerging role of the inflammasome in kidney diseases. Curr. Opin. Nephrol. Hypertens. 23, 204–210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Settleman, J. Oncogene addiction. Curr. Biol. 22, R43–R44 (2012).

    Article  CAS  PubMed  Google Scholar 

  259. Sharma, S. V. & Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 21, 3214–3231 (2007).

    Article  CAS  PubMed  Google Scholar 

  260. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Liu, H. et al. MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits. Nat. Cell Biol. 14, 567–574 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Pernicova, I. & Korbonits, M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  264. Dorff, T. B., Pal, S. K. & Quinn, D. I. Novel tyrosine kinase inhibitors for renal cell carcinoma. Expert Rev. Clin. Pharmacol. 7, 67–73 (2014).

    Article  CAS  PubMed  Google Scholar 

  265. Logan, T. F. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr. Oncol. Rep. 15, 83–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  266. American Cancer Society. Cancer Facts & Figures 2014. cancer.org [online], (2014).

  267. Piccirillo, J. F. et al. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA 291, 2441–2447 (2004).

    Article  CAS  PubMed  Google Scholar 

  268. Torres, V. E. et al. Angiotensin blockade in late autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2267–2276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Schrier, R. W. et al. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2255–2266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ellison, D. H. & Ingelfinger, J. R. A quest—halting the progression of autosomal dominant polycystic kidney disease. N. Engl. J. Med. 371, 2329–2331 (2014).

    Article  PubMed  Google Scholar 

  271. Abi Aad, S. et al. Hypertension induced by chemotherapeutic and immunosuppresive agents: A new challenge. Crit. Rev. Oncol. Hematol. 93, 28–35 (2015).

    Article  PubMed  Google Scholar 

  272. Hamet, P. Cancer and hypertension. An unresolved issue. Hypertension 28, 321–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  273. Sanfilippo, K. M. et al. Hypertension and obesity and the risk of kidney cancer in 2 large cohorts of US men and women. Hypertension 63, 934–941 (2014).

    Article  CAS  PubMed  Google Scholar 

  274. Sipahi, I. et al. Meta-analysis of randomized controlled trials on effect of angiotensin-converting enzyme inhibitors on cancer risk. Am. J. Cardiol. 108, 294–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  275. Piersol, G. M. Polycystic Disease of the Kidney. Trans. Am. Climatol. Clin. Assoc. 43, 221–231 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Rossetti, S. et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 18, 2143–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  277. Audrezet, M. P. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 33, 1239–1250 (2012).

    Article  CAS  PubMed  Google Scholar 

  278. Cornec-Le Gall, E. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 24, 1006–1013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Lara, P. N. Jr & Jonasch, E. (Eds) Kidney Cancer: Principles and Practice. (Springer–Verlag, 2012).

    Book  Google Scholar 

  280. Linehan, W. M. Genetic basis of bilateral renal cancer: implications for evaluation and management. J. Clin. Oncol. 27, 3731–3733 (2009).

    Article  PubMed  Google Scholar 

  281. Dutcher, J. P. Recent developments in the treatment of renal cell carcinoma. Ther. Adv. Urol. 5, 338–353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those of our colleagues whose work we were unable to cite because of reference limits. We are very grateful to Dr James Calvet and Dr Jared Grantham (University of Kansas Medical Center, USA), who generously provided many useful suggestions and comments on the manuscript. We also thank the reviewers of this article for their valuable critiques. The authors were supported by funding from the PKD Foundation and DOD PRMRP W81XWH-12-1-0437/PR110518 (to E.A.G.), from the German Research Foundation SE2280/3-1, Köln Fortune 252/2013 and by the German Ministry of Science and Education (BMBF) as part of the MILES consortium (grant 01ZX1406) (to T.S.-N.), Pfizer independent grant #11703,561 (to D.M.G.), BE2212, SFB829, SFB832 (to T.B.), and by NIH Core Grant CA06927 (to Fox Chase Cancer Center).

Author information

Authors and Affiliations

Authors

Contributions

T.S.-N., D.M.G., A.S.N. and E.A.G. researched data for the article. T.S.-N., D.M.G., and E.A.G. wrote the article. T.B. and A.S.N. contributed to the discussion and helped edit the manuscript for submission.

Corresponding author

Correspondence to Erica A. Golemis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeger-Nukpezah, T., Geynisman, D., Nikonova, A. et al. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 11, 515–534 (2015). https://doi.org/10.1038/nrneph.2015.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.46

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer