Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transcriptional regulation of innate lymphoid cell fate

Key Points

  • Three distinct groups of innate lymphoid cells (ILCs) have been categorized — these have unique and overlapping functions in immunity.

  • Several committed ILC-restricted progenitor subsets have been discovered, and the transcriptional programmes that drive their generation have also been deciphered.

  • A complex repertoire of transcription factors has been shown to control ILC diversification and maturation.

  • ILC subsets within tissues are maintained and tuned through a set of environmental signals that balance cellular homeostasis and functional plasticity.

Abstract

Innate lymphoid cells (ILCs) are a recently described family of lymphoid effector cells that have important roles in immune defence, inflammation and tissue remodelling. It has been proposed that ILCs represent 'innate' homologues of differentiated effector T cells, and they have been categorized into three groups — namely, ILC1s, ILC2s and ILC3s — on the basis of their expression of cytokines and transcription factors that are typically associated with T helper 1 (TH1)-, TH2- and TH17-type immune responses, respectively. Indeed, remarkable similarity is seen between the specific transcription factors required for the development and diversification of different ILC groups and those that drive effector T cell differentiation. The recent identification of dedicated ILC precursors has provided a view of the mechanisms that control this first essential stage of ILC development. Here, we discuss the transcriptional mechanisms that regulate ILC development and diversification into distinct effector subsets with key roles in immunity and tissue homeostasis. We further caution against the current distinction between 'helper' versus 'killer' subsets in the evolving area of ILC nomenclature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ILC groups and subsets.
Figure 2: Model for mouse ILC development.
Figure 3: Models for ILC lineage commitment.
Figure 4: ILC maintenance and plasticity in tissues.

Similar content being viewed by others

References

  1. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    CAS  PubMed  Google Scholar 

  2. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013). This concise review describes and defines the consensus nomenclature for the ILC family.

    CAS  PubMed  Google Scholar 

  3. Di Santo, J. P. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24, 257–286 (2006).

    CAS  PubMed  Google Scholar 

  4. Shi, F. D., Ljunggren, H. G., La Cava, A. & Van Kaer, L. Organ-specific features of natural killer cells. Nat. Rev. Immunol. 11, 658–671 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Takeda, K. et al. TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105, 2082–2089 (2005).

    CAS  PubMed  Google Scholar 

  6. Tay, C. H. & Welsh, R. M. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J. Virol. 71, 267–275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    CAS  PubMed  Google Scholar 

  8. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    CAS  PubMed  Google Scholar 

  10. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marquardt, N. et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 194, 2467–2472 (2015).

    CAS  PubMed  Google Scholar 

  13. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    CAS  PubMed  Google Scholar 

  14. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  15. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  Google Scholar 

  17. Halim, T. Y., Krauss, R. H., Sun, A. C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    CAS  PubMed  Google Scholar 

  18. Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

    CAS  PubMed  Google Scholar 

  19. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartemes, K. R. et al. IL-33-responsive lineage CD25+CD44hi lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J. Immunol. 188, 1503–1513 (2012).

    CAS  PubMed  Google Scholar 

  21. Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Klein Wolterink, R. G. et al. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc. Natl Acad. Sci. USA 110, 10240–10245 (2013).

    PubMed  Google Scholar 

  25. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gold, M. J. et al. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J. Allergy Clin. Immunol. 133, 1142–1148 (2014).

    CAS  PubMed  Google Scholar 

  27. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Halim, T. Y. F. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Barlow, J. L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–194 (2012).

    CAS  PubMed  Google Scholar 

  31. Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939–2950 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA 111, 367–372 (2014).

    CAS  PubMed  Google Scholar 

  33. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Furusawa, J. et al. Critical role of p38 and GATA3 in natural helper cell function. J. Immunol. 191, 1818–1826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40, 378–388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mjosberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011).

    PubMed  Google Scholar 

  38. Liang, H. E. et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat. Immunol. 13, 58–66 (2012).

    CAS  Google Scholar 

  39. Bernink, J. H., Germar, K. & Spits, H. The role of ILC2 in pathology of type 2 inflammatory diseases. Curr. Opin. Immunol. 31, 115–120 (2014).

    CAS  PubMed  Google Scholar 

  40. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Lee, M.-W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Walker, J. A., Barlow, J. L. & McKenzie, A. N. Innate lymphoid cells — how did we miss them? Nat. Rev. Immunol. 13, 75–87 (2013).

    CAS  PubMed  Google Scholar 

  43. Van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    CAS  PubMed  Google Scholar 

  44. Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    CAS  PubMed  Google Scholar 

  45. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    CAS  PubMed  Google Scholar 

  46. Leavy, O. Mucosal immunology: Multifunctional gut IgA+ plasma cells. Nat. Rev. Immunol. 12, 75 (2012).

    CAS  PubMed  Google Scholar 

  47. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    CAS  PubMed  Google Scholar 

  48. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    CAS  PubMed  Google Scholar 

  50. Cherrier, M., Sawa, S. & Eberl, G. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209, 729–740 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  52. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    CAS  PubMed  Google Scholar 

  53. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    CAS  PubMed  Google Scholar 

  54. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6RORγ+ innate lymphoid cells. Nature 494, 261–265 (2013).

    CAS  PubMed  Google Scholar 

  56. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγ+ innate lymphocytes. Immunity 33, 736–751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    CAS  PubMed  Google Scholar 

  59. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORc+ CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    CAS  PubMed  Google Scholar 

  60. Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336, 1321–1325 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoorweg, K. et al. Functional differences between human NKp44 and NKp44+ RORC+ innate lymphoid cells. Front. Immunol. 3, 72 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    CAS  PubMed  Google Scholar 

  63. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ng, S. Y.-M., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30, 493–507 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rothenberg, E. V. Transcriptional control of early T and B cell developmental choices. Annu. Rev. Immunol. 32, 283–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshida, H. et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol. 167, 2511–2521 (2001).

    CAS  PubMed  Google Scholar 

  67. Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nat. Immunol. 12, 949–958 (2011).

    CAS  PubMed  Google Scholar 

  68. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014). References 9 and 68 are the first reports describing common progenitor cells of ILCs.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, X. et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3, e04406 (2014).

    PubMed Central  Google Scholar 

  70. Rosmaraki, E. E. et al. Identification of committed NK cell progenitors in adult murine bone marrow. Eur. J. Immunol. 31, 1900–1909 (2001).

    CAS  PubMed  Google Scholar 

  71. Carotta, S., Pang, S. H. M., Nutt, S. L. & Belz, G. T. Identification of the earliest NK-cell precursor in the mouse BM. Blood 117, 5449–5452 (2011).

    CAS  PubMed  Google Scholar 

  72. Fathman, J. W. et al. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118, 5439–5447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Verykokakis, M., Zook, E. C. & Kee, B. L. ID'ing innate and innate-like lymphoid cells. Immunol. Rev. 261, 177–197 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Boos, M. D., Yokota, Y., Eberl, G. & Kee, B. L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2. Nature 397, 702–706 (1999).

    CAS  PubMed  Google Scholar 

  76. Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y. & Yokota, Y. Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc. Natl Acad. Sci. USA 98, 5164–5169 (2001).

    CAS  PubMed  Google Scholar 

  77. Xu, W. et al. E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment. Blood 121, 1534–1542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

    CAS  PubMed  Google Scholar 

  79. Kee, B. L. & Murre, C. Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J. Exp. Med. 188, 699–713 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Heemskerk, M. H. et al. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakahiro, T., Kurooka, H., Mori, K., Sano, K. & Yokota, Y. Identification of BMP-responsive elements in the mouse Id2 gene. Biochem. Biophys. Res. Commun. 399, 416–421 (2010).

    CAS  PubMed  Google Scholar 

  82. Tong, X. et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285, 36401–36409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamajuku, D. et al. Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator. FEBS Lett. 585, 2217–2222 (2011).

    CAS  PubMed  Google Scholar 

  84. Male, V., Nisoli, I., Gascoyne, D. M. & Brady, H. J. M. E4BP4: an unexpected player in the immune response. Trends Immunol. 33, 98–102 (2012).

    CAS  PubMed  Google Scholar 

  85. Gascoyne, D. M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10, 1118–1124 (2009).

    CAS  PubMed  Google Scholar 

  86. Kamizono, S. et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206, 2977–2986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Geiger, T. L. et al. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211, 1723–1731 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Seillet, C. et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211, 1733–1740 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu, W. et al. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10, 2043–2054 (2015). References 69 and 87–89 report the essential role of transcription factor NFIL3 in ILC development.

    CAS  PubMed  Google Scholar 

  90. Ikushima, S. et al. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc. Natl Acad. Sci. USA 94, 2609–2614 (1997).

    CAS  PubMed  Google Scholar 

  91. Seillet, C. et al. Differential requirement for Nfil3 during NK cell development. J. Immunol. 192, 2667–2676 (2014).

    CAS  PubMed  Google Scholar 

  92. Male, V. et al. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211, 635–642 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tindemans, I., Serafini, N., Di Santo, J. P. & Hendriks, R. W. GATA-3 function in innate and adaptive immunity. Immunity 41, 191–206 (2014).

    CAS  PubMed  Google Scholar 

  94. Vosshenrich, C. A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    CAS  PubMed  Google Scholar 

  95. Serafini, N. et al. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J. Exp. Med. 211, 199–208 (2014). References 36 and 95 characterized a role for the transcription factor GATA3 in ILC3 differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354–365 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Samson, S. I. et al. GATA-3 promotes maturation, IFN-γ production, and liver-specific homing of NK cells. Immunity 19, 701–711 (2003).

    CAS  PubMed  Google Scholar 

  98. Constantinides, M. G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    CAS  PubMed  Google Scholar 

  100. Colucci, F. et al. Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nat. Immunol. 3, 288–294 (2002).

    CAS  PubMed  Google Scholar 

  101. Magram, J. et al. IL-12-deficient mice are defective in IFN γ production and type 1 cytokine responses. Immunity 4, 471–481 (1996).

    CAS  PubMed  Google Scholar 

  102. Aliahmad, P., de la Torre, B. & Kaye, J. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat. Immunol. 11, 945–952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Barton, K. et al. The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9, 555–563 (1998).

    CAS  PubMed  Google Scholar 

  105. Djuretic, I. M. et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat. Immunol. 8, 145–153 (2007).

    CAS  PubMed  Google Scholar 

  106. Vahedi, G. et al. Helper T-cell identity and evolution of differential transcriptomes and epigenomes. Immunol. Rev. 252, 24–40 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wilkinson, B. et al. TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat. Immunol. 3, 272–280 (2002).

    CAS  PubMed  Google Scholar 

  109. Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).

    CAS  PubMed  Google Scholar 

  110. Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377, 639–642 (1995).

    CAS  PubMed  Google Scholar 

  111. Bories, J. C. et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 proto-oncogene. Nature 377, 635–638 (1995).

    CAS  PubMed  Google Scholar 

  112. Ramirez, K. et al. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36, 921–932 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wong, S. H. et al. Transcription factor RORα is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Spooner, C. J. et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14, 1229–1236 (2013).

    CAS  PubMed  Google Scholar 

  115. Yang, Q. et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38, 694–704 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential 'inflammatory' type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    CAS  PubMed  Google Scholar 

  117. Koyasu, S. Inflammatory ILC2 cells: disguising themselves as progenitors? Nat. Immunol. 16, 133–134 (2015).

    CAS  PubMed  Google Scholar 

  118. Mielke, L. A. et al. TCF-1 controls ILC2 and NKp46+RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol. 191, 4383–4391 (2013).

    CAS  PubMed  Google Scholar 

  119. Hamilton, B. A. et al. Disruption of the nuclear hormone receptor RORα in staggerer mice. Nature 379, 736–739 (1996).

    CAS  PubMed  Google Scholar 

  120. Halim, T. Y. et al. Retinoic-acid-receptor-related orphan nuclear receptor α is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

    CAS  PubMed  Google Scholar 

  121. Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 16, 306–317 (2015). This paper represents a transcriptional resource for diverse ILC subsets.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Montaldo, E. et al. Human RORγt+CD34+ cells are lineage-specified progenitors of group 3 RORγt+ innate lymphoid cells. Immunity 41, 988–1000 (2014).

    CAS  PubMed  Google Scholar 

  123. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2012).

    CAS  Google Scholar 

  124. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    CAS  PubMed  Google Scholar 

  125. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  126. Van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rankin, L. C. et al. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14, 389–395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sciume, G. et al. Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 209, 2331–2338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yoshida, H. et al. IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11, 643–655 (1999).

    CAS  PubMed  Google Scholar 

  131. Bando, J. K., Liang, H.-E. & Locksley, R. M. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 16, 153–160 (2015). This paper describes the identification of ARG1-expressing fetal ILCPs and their progeny.

    CAS  PubMed  Google Scholar 

  132. Vosshenrich, C. A. J. et al. Roles for common cytokine receptor γ-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J. Immunol. 174, 1213–1221 (2005).

    CAS  PubMed  Google Scholar 

  133. Freud, A. G. et al. A human CD34+ subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22, 295–304 (2005).

    CAS  PubMed  Google Scholar 

  134. Mackley, E. C. et al. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6, 5862–5869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Puzanov, I. J., Bennett, M. & Kumar, V. IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol. 157, 4282–4285 (1996).

    CAS  PubMed  Google Scholar 

  136. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Huntington, N. D. et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 206, 25–34 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Schmutz, S. et al. Cutting edge: IL-7 regulates the peripheral pool of adult ROR γ+ lymphoid tissue inducer cells. J. Immunol. 183, 2217–2221 (2009).

    CAS  PubMed  Google Scholar 

  140. Merzoug, L. B. et al. Conditional ablation of NKp46+ cells using a novel Ncr1greenCre mouse strain: NK cells are essential for protection against pulmonary B16 metastases. Eur. J. Immunol. 44, 3380–3391 (2014).

    PubMed  Google Scholar 

  141. Ranson, T. et al. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101, 4887–4893 (2003).

    CAS  PubMed  Google Scholar 

  142. Lodolce, J. P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    CAS  PubMed  Google Scholar 

  143. Liou, Y.-H. et al. Adipocyte IL-15 regulates local and systemic NK cell development. J. Immunol. 193, 1747–1758 (2014).

    CAS  PubMed  Google Scholar 

  144. Kim, G. Y., Hong, C. & Park, J.-H. Seeing is believing: illuminating the source of in vivo interleukin-7. Immune Netw. 11, 1–10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Leavy, O. Natural killer cells: adaptive control of NK cells. Nat. Rev. Immunol. 13, 394 (2013).

    CAS  PubMed  Google Scholar 

  146. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hughes, T. et al. Interleukin-1β selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 32, 803–814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Van de Berg, P. J., van Leeuwen, E. M., ten Berge, I. J. & van Lier, R. Cytotoxic human CD4+ T cells. Curr. Opin. Immunol. 20, 339–343 (2008).

    CAS  PubMed  Google Scholar 

  150. Van Kaer, L. et al. CD8αα+ innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity. Immunity 41, 451–464 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Karo, J. M., Schatz, D. G. & Sun, J. C. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159, 94–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of the laboratory for helpful discussions. This work is supported by grants from the Institut Pasteur, Institut National de la Santé et de la Recherche Médicale (INSERM), Ligue National Contre le Cancer and the Agence National pour la Recherche. The authors apologize to those colleagues whose work has not been cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Di Santo.

Ethics declarations

Competing interests

James P. Di Santo is a founder and stakeholder in AXENIS (Paris, France).

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serafini, N., Vosshenrich, C. & Di Santo, J. Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol 15, 415–428 (2015). https://doi.org/10.1038/nri3855

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing