Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Notch signalling during peripheral T-cell activation and differentiation

Key Points

  • Notch transmembrane receptors (Notch1, Notch2, Notch3 and Notch4 in mammals) are evolutionarily conserved proteins that mediate cell-fate decisions in many systems during embryogenesis and postnatal development, including the immune system.

  • During thymocyte development, Notch proteins regulate binary cell-fate choices at crucial checkpoints, including T-cell- versus B-cell-specific gene expression, αβ versus γδ T-cell-receptor expression, and CD4+ versus CD8+ lineage decisions.

  • Notch signalling in mammals is triggered by five canonical ligands: Jagged1, Jagged2, Delta-like 1 (DLL1), DLL3 and DLL4. Additional, non-canonical ligands have also been described, which indicates that there are additional mechanisms of initiating Notch signalling at the cell surface.

  • Notch proteins interact with the canonical nuclear binding partner CSL (CBF1-suppressor of hairless–Lag1; known as RBP-J in mice), to convert a transcriptional repressor complex to an activating complex by displacing co-repressors and recruiting co-activators.

  • Notch proteins have been shown to interact with members of the nuclear factor-κB (NF-κB) family of transcription factors to regulate expression of the gene encoding interferon-γ and other genes.

  • Potential roles for Notch proteins in the activation and differentiation of peripheral T cells to T helper 1 (TH1), TH2 and regulatory T cells have been described, which indicates that manipulation of Notch signalling might prove to be beneficial for the treatment of certain autoimmune conditions, or in the context of transplantation.

Abstract

For many years, researchers have focused on the contribution of Notch signalling to lymphoid development. Only recently have investigators begun to ask what role, if any, Notch has during the activation and differentiation of naive CD4+ T cells in the periphery. As interest in this issue grows, it is becoming increasingly clear that the main role of Notch signalling, to regulate cell-fate decisions, might also be influential in peripheral T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch expression and activation.
Figure 2: Canonical pathway of Notch signalling through CSL.
Figure 3: Possible consequences of Notch signalling.
Figure 4: The role of Notch proteins in peripheral T cells.

Similar content being viewed by others

References

  1. Morgan, T. H. The theory of the gene. Am. Nat. 51, 513–544 (1917).

    Article  Google Scholar 

  2. Baron, M. An overview of the Notch signaling pathway. Semin. Cell Dev. Biol. 14, 113–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Huppert, S. S. et al. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 405, 966–970 (2000). This paper highlights the absolute requirement for Notch1 during embryonic development.

    Article  CAS  PubMed  Google Scholar 

  4. Hamada, Y. et al. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415–3424 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Kitamoto, T. et al. Functional redundancy of the Notch gene family during mouse embryogenesis: analysis of Notch gene expression in Notch3-deficient mice. Biochem. Biophys. Res. Commun. 331, 1154–1162 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Y. W., Nichols, R. A., Letterio, J. J. & Aplan, P. D. Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 107, 2540–2543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dumortier, A. et al. Notch activation is an early and critical event during T-cell leukemogenesis in Ikaros-deficient mice. Mol. Cell. Biol. 26, 209–220 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3-transgenic mice. EMBO J. 19, 3337–3348 (2000). The first study to provide a mechanistic link between constitutive Notch3 expression and downstream activation of NF-κB in driving the development of T-cell leukaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsunami, N. et al. A protein binding to the Jκ recombination sequence of immunoglobulin genes contains a sequence related to the integrase motif. Nature 342, 934–937 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Kato, H. et al. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 124, 4133–4141 (1997). This paper describes RBP-J as an important mediator of Notch1 signalling.

    Article  CAS  PubMed  Google Scholar 

  11. Oka, C. et al. Disruption of the mouse RBP-Jκ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, S. & Hayward, S. D. Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol. Cell. Biol. 21, 6222–6232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, H. K. & Siu, G. The notch pathway intermediate HES-1 silences CD4 gene expression. Mol. Cell. Biol. 18, 7166–7175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaneta, M. et al. A role for pref-1 and HES-1 in thymocyte development. J. Immunol. 164, 256–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Hoebeke, I. et al. Overexpression of HES-1 is not sufficient to impose T-cell differentiation on human hematopoietic stem cells. Blood 107, 2879–2881 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Maier, M. M. & Gessler, M. Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem. Biophys. Res. Commun. 275, 652–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Steidl, C. et al. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping and mutation screening of a new bHLH gene family. Genomics 66, 195–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Krebs, L. T., Deftos, M. L., Bevan, M. J. & Gridley, T. The Nrarp gene encodes an ankyrin-repeat protein that is transcriptionally regulated by the Notch signaling pathway. Dev. Biol. 238, 110–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Yun, T. J. & Bevan, M. J. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T-cell development. J. Immunol. 170, 5834–5841 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Allman, D. et al. Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J. Exp. Med. 194, 99–106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B-cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Choi, J. W., Pampeno, C., Vukmanovic, S. & Meruelo, D. Characterization of the transcriptional expression of Notch-1 signaling pathway members, Deltex and HES-1, in developing mouse thymocytes. Dev. Comp. Immunol. 26, 575–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Shin, H. M. et al. Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO J. 25, 129–138 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Minter, L. M. et al. Inhibitors of γ-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nature Immunol. 6, 680–688 (2005). This study describes a T-cell-intrinsic role for Notch1 in the differentiation of T H 1 cells, and the use of pharmacological inhibitors of Notch1 activation as a potential therapeutic option in the treatment of T H 1-cell-mediated autoimmune disease.

    Article  CAS  Google Scholar 

  25. Palaga, T., Miele, L., Golde, T. E. & Osborne, B. A. TCR-mediated Notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka, S. et al. The interleukin-4 enhancer CNS-2 is regulated by Notch signals and controls initial expression in NKT cells and memory-type CD4 T cells. Immunity 24, 689–701 (2006). This study examines how Notch proteins function to regulate IL-4 expression in certain subsets of immune cells, and shows a requirement for CSL in this process.

    Article  CAS  PubMed  Google Scholar 

  27. Radtke, F. et al. Deficient T-cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999). A seminal paper describing the requirement for Notch proteins in directing T-cell lineage commitment.

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, A., MacDonald, H. R. & Radtke, F. Notch1-deficient common lymphoid precursors adopt a B-cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan, J. B., Visan, I., Yuan, J. S. & Guidos, C. J. Requirement for Notch1 signals at sequential early stages of intrathymic T-cell development. Nature Immunol. 6, 671–679 (2005).

    Article  CAS  Google Scholar 

  30. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999). This paper shows that ectopic expression of Notch1 in bone-marrow cells induces aberrant development of immature T cells in the bone marrow, at the expense of B-cell development.

    Article  CAS  PubMed  Google Scholar 

  32. Kawamata, S., Du, C., Li, K. & Lavau, C. Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations. Oncogene 21, 3855–3863 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Washburn, T. et al. Notch activity influences the αβ versus γδ T-cell lineage decision. Cell 88, 833–843 (1997). This study describes a role for Notch proteins at a crucial checkpoint of T-cell development, namely specification of the TCR.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Peydro, M., de Yebenes, V. G. & Toribio, M. L. Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a γδ T-cell fate in fetal thymus organ culture. Blood 102, 2444–2451 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Tanigaki, K. et al. Regulation of αβ/γδ T-cell lineage commitment and peripheral T-cell responses by Notch/RBP-J signaling. Immunity 20, 611–622 (2004). A thorough survey of the effects on T-cell development in the absence of RBP-J signalling.

    Article  CAS  PubMed  Google Scholar 

  36. Garbe, A. I., Krueger, A., Gounari, F., Zuniga-Pflucker, J. C. & von Boehmer, H. Differential synergy of Notch and T-cell receptor signaling determines αβ versus γδ lineage fate. J. Exp. Med. 203, 1579–1590 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciofani, M., Knowles, G. C., Wiest, D. L., von Boehmer, H. & Zuniga-Pflucker, J. C. Stage-specific and differential notch dependency at the αβ and γδ T-lineage bifurcation. Immunity 25, 105–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T-cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Izon, D. J. et al. Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 14, 253–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Fowlkes, B. J. & Robey, E. A reassessment of the effect of activated Notch1 on CD4 and CD8 T-cell development. J. Immunol. 169, 1817–1821 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Wolfer, A. et al. Inactivation of Notch1 in immature thymocytes does not perturb CD4 or CD8 T-cell development. Nature Immunol. 2, 235–241 (2001).

    Article  CAS  Google Scholar 

  42. Huang, Y. & Wange, R. L. T-cell receptor signaling: beyond complex complexes. J. Biol. Chem. 279, 28827–28830 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  44. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T-cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Mullen, A. C. Cell cycle controlling the silencing and functioning of mammalian activators. Curr. Biol. 11, 1695–1699 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Szabo, S. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  PubMed  Google Scholar 

  49. Zhang, D. H., Yang, L. & Ray, A. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J. Immunol. 161, 3817–3821 (1998).

    CAS  PubMed  Google Scholar 

  50. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  51. Okajima, T. & Irvine, K. D. Regulation of notch signaling by O-linked fucose. Cell 111, 893–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Okajima, T., Xu, A., Lei, L. & Irvine, K. D. Chaperone activity of protein O-fucosyltransferase 1 promotes notch receptor folding. Science 307, 1599–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nature Cell Biol. 2, 515–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, L. T. et al. Fringe glycosyltranferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 132, 1751–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Lieber, T., Kidd, S. & Young, M. W. Kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev. 16, 209–221 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Hicks, C. et al. A secreted Delta1–Fc fusion protein functions both as an activator and inhibitor of Notch1 signaling. J. Neurosci. Res. 68, 655–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Ge, W. et al. Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J. Neurosci. Res. 69, 848–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Maekawa, Y. et al. Delta1–Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19, 549–559 (2003). The first study to indicate that Notch receptor–ligand interactions can direct T H 1-cell differentiation, and that the manipulation of these interactions can modulate resistance or susceptibility to T H 1-cell-mediated disease.

    Article  CAS  PubMed  Google Scholar 

  65. Rutz, S., Mordmuller, B., Sakano, S. & Scheffold, A. Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur. J. Immunol. 35, 2443–2451 (2004).

    Article  CAS  Google Scholar 

  66. Mumm, J. S. et al. Ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Ross, D. A. & Kadesch, T. Consequences of Notch-mediated induction of Jagged1. Exp. Cell Res. 296, 173–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Yamaguchi, E. et al. Expression of Notch ligands, Jagged1, 2 and Delta1 in antigen-presenting cells in mice. Immunol. Lett. 81, 59–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Adler, S. H. et al. Notch signaling augments T-cell responsiveness by enhancing CD25 expression. J. Immunol. 171, 2896–2903 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Eiraku, M. et al. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nature Neurosci. 8, 873–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Hu, Q. D. et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115, 163–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Cui, X. Y. et al. NB-3/ Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J. Biol. Chem. 279, 25858–25865 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Sakamoto, K. et al. The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J. Biol. Chem. 277, 29399–29405 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Miyamoto, A., Lau, R., Hein, P. W., Shipley, M. & Weinmaster, G. Microfibrillar proteins MAGP-1 and MAGP-2 induce Notch1 extracellular domain dissociation and receptor activation. J. Biol. Chem. 281, 10089–10097 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Sanchez-Irizzary, C. et al. Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol. Cell Biol. 24, 9265–9273 (2004).

    Article  CAS  Google Scholar 

  76. Weng, A. P. et al. Activating mutations of NOTCH1 in human T-cell acute lymphoblastic leukemia. Science 306, 269–271 (2004). An analysis of samples from patients with T-cell acute lymphoblastic leukaemia showing that transformation-associated mutations in Notch1 occur in 'hotspots' in a few key domains.

    Article  CAS  PubMed  Google Scholar 

  77. Jarriault, S. et al. Signaling downstream of activated mammalian Notch. Nature 377, 355–358 (1995). This paper provides early information characterizing HES-family genes as downstream targets of Notch signalling.

    Article  CAS  PubMed  Google Scholar 

  78. Shi, Y. et al. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 15, 1140–1151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oswald, F. et al. SHARP is a novel component of the Notch/RBP-Jκ signalling pathway. EMBO J. 21, 5417–5426 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsieh, J. J., Zhou, S., Chen, L., Young, D. B. & Hayward, S. D. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc. Natl Acad. Sci. USA 96, 23–28 (1999).

    Article  CAS  Google Scholar 

  81. Oswald, F. et al. RBP-Jκ/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol. Cell. Biol. 25, 10379–10390 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, S., Fujimuro, M., Hsieh, J. J., Chen, L. & Hayward, S. D. A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J. Virol. 74, 1939–1947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, L., Sun, T., Kobayashi, K., Gao, P. & Griffin, J. D. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol. Cell. Biol. 22, 7688–7700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jeffries, S., Robbins, D. J. & Capobianco, A. J. Characterization of a high-molecular-weight Notch complex in the nucleus of Notch(ic)-transformed RKE cells and in a human T-cell leukemia cell line. Mol. Cell. Biol. 22, 3927–3941 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oswald, F. et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol. 21, 7761–7774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wallberg, A., Pedersen, K., Lendahl, U. & Roeder, R. G. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by Notch intracellular domains in vitro. Mol. Cell. Biol. 22, 7812–7819 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kurooka, H. & Honjo, T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J. Biol. Chem. 275, 17211–17220 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006). An elegant paper describing the physical interaction between Notch proteins, CSL and MAML1.

    Article  CAS  PubMed  Google Scholar 

  89. Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C. & Jones, K. A. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev. 16, 1397–1411 (2006).

    Article  CAS  Google Scholar 

  90. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Hori, K. et al. Drosophila deltex mediates suppressor of hairless-independent and late-endosomal activation of Notch signaling. Development 131, 5527–5537 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B-cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Storck, S. et al. Normal immune system development in mice lacking the Deltex1 RING finger domain. Mol. Cell. Biol. 25, 1437–1445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lehar, S. M. & Bevan, M. J. T cells develop normally in the absence of both Deltex1 and Deltex2. Mol. Cell. Biol. 26, 7358–7371 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Oswald, F., Liptay, S., Adler, G. & Schmid, R. M. NF-κB2 is a putative target gene of activated Notch-1 via RBP-Jκ. Mol. Cell. Biol. 18, 2077–2088 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oakley, F. et al. Basal expression of IκBα is controlled by the mammalian transcriptional repressor RBP-J (CBF1) and its activator Notch1. J. Biol. Chem. 278, 24359–24370 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Bash, J. et al. Rel/NF-κB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. EMBO J. 18, 2803–2811 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cheng, P. et al. Notch-1 regulates NF-κB activity in hemopoietic progenitor cells. J. Immunol. 167, 4458–4467 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Vales, L. D. & Friedl, E. M. Binding of C/EBP and RBP (CBF1) to overlapping sites regulates interleukin-6 gene expression. J. Biol. Chem. 277, 42438–42446 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Mann, J., Oakley, F., Johnson, P. W. & Mann, D. A. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-κB, and CBF1. J. Biol. Chem. 277, 17125–17138 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, S. H., Wang, X. & DeJong, J. Functional interactions between an atypical NF-κB site from the rat CYP2B1 promoter and the transcriptional repressor RBP-Jκ/CBF1. Nucleic Acids Res. 28, 2091–2098 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guan, E. et al. T-cell leukemia-associated human Notch/translocation-associated Notch homologue has IκB-like activity and physically interacts with nuclear factor-κB proteins in T cells. J. Exp. Med. 183, 2025–2032 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, J. et al. Human Notch-1 inhibits NF-κB activity in the nucleus through a direct interaction involving a novel domain. J. Immunol. 167, 289–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Jehn, B. M., Bielke, W., Pear, W. S. & Osborne, B. A. Protective effects of Notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635–638 (1999).

    CAS  PubMed  Google Scholar 

  105. Sade, H., Krishna, S. & Sarin, A. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J. Biol. Chem. 279, 2937–2944 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. McKenzie, G. et al. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol. 7, 10–20 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Foltz, D. R., Santiago, M. C., Berechid, B. E. & Nye, J. S. Glycogen synthase kinase-3β modulates Notch signaling and stability. Curr. Biol. 2, 1006–1011 (2002).

    Article  Google Scholar 

  108. Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Benson, R. A. et al. Notch1 co-localizes with CD4 on activated T cells and Notch signaling is required for IL-10 production. Eur. J. Immunol. 35, 859–869 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Anderson, A. C. et al. The Notch regulator Numb links the Notch and TCR signaling pathways. J. Immunol. 174, 890–897 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Felli, M. P. et al. PKCθ mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 24, 992–1000 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Grabher, C., von Boehmer, H. & Look, A. T. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nature Rev. Cancer 6, 347–359 (2006).

    Article  CAS  Google Scholar 

  113. Kopan, R. & Ilagan, M. X. γ-secretase: proteosome of the membrane? Nature Rev. Mol. Cell Biol. 5, 499–504 (2004).

    Article  CAS  Google Scholar 

  114. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004). An investigation into the effects of distinct Notch receptor–ligand interactions, and the first study to indicate that Notch proteins might function to regulate the IL4 locus.

    Article  CAS  PubMed  Google Scholar 

  115. Tu, L. et al. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med. 202, 1037–1042 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tacchini-Cottier, F., Allenbach, C., Otten, L. A. & Radtke, F. Notch1 expression on T cells is not required for CD4+ T helper differentiation. Eur. J. Immunol. 34, 1588–1596 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Hoyne, G. F., Dallman, M. J. & Lamb, J. R. Linked suppression in peripheral T-cell tolerance to the house dust mite derived allergen Der p1. Int. Arch. Allergy Immunol. 118, 122–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Ng, W. F. et al. Human CD4+CD25+ cells: a naturally occurring population of regulatory T cells. Blood 98, 2736–2744 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Hoyne, G. F. et al. Serrate1-induced Notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int. Immunol. 12, 177–185 (2000). A follow-up to their earlier study, this paper shows that antigens presented by APCs that are engineered to overexpress the Notch ligand Jagged1 generate antigen-specific CD4+ regulatory T cells that can transfer tolerance to naive mice.

    Article  CAS  PubMed  Google Scholar 

  120. Vigouroux, S. et al. Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J. Virol. 77, 10872–10880 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yvon, E. S. et al. Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood 102, 3815–3821 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Wong, K. K. et al. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J. Clin. Invest. 112, 1741–1750 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anastasi, E. et al. Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J. Immunol. 171, 4504–4511 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Aronica, M. A. et al. Preferential role for NF-κB/Rel signaling in the type 1 but not type 2 T-cell-dependent immune response in vivo. J. Immunol. 163, 5116–5124 (1999).

    CAS  PubMed  Google Scholar 

  125. Corn, R. A., Hunter, C., Liou, H. C., Siebenlist, U. & Boothby, M. R. Opposing roles for RelB and Bcl-3 in regulation of T-box expressed in T cells, GATA-3, and Th effector differentiation. J. Immunol. 175, 2102–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Dryer, R. L. & Covey, L. R. A novel NF-κB-regulated site within the human Iγ1 promoter requires p300 for optimal transcriptional activity. J. Immunol. 175, 4499–4507 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Shen, H. et al. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev. 20, 675–688 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vacca, A. et al. Notch3 and pre-TCR interaction unveils distinct NF-κB pathways in T-cell development and leukemia. EMBO J. 25, 1000–1008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Caamano, J. & Hunter, C. A. NF-κB family of transcription factors: central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 15, 414–429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Lee, H. et al. Role of Rel-related factors in control of c-myc gene transcription in receptor-mediated apoptosis of the murine B-cell WEHI231 line. J. Exp. Med. 181, 1169–1177 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  Google Scholar 

  133. Weil, R. & Israel, A. Deciphering the pathway from the TCR to NF-κB. Cell Death Differ. 13, 826–833 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank members of the Osborne laboratory for comments and conversations, and R. Goldsby for critical review and support. We also thank L. Miele and T. Golde for continued collaborations and discussions over the past several years. We apologize to all of those investigators whose data could not be cited owing to space considerations. B.A.O. and L.M.M. are supported by grants from the United States National Institute of Allergy and Infectious Diseases and National Institute of Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara A. Osborne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Barbara Osborne's homepage

Glossary

T helper 1/T helper 2 cells

(TH1/TH2 cells). Functional subsets of CD4+ T cells expressing an αβ T-cell receptor that produce either type 1 cytokines (interleukin-2 (IL-2), interferon-γ and other cytokines that support macrophage activation, the generation of cytotoxic T cells and the production of opsonizing antibodies) or type 2 cytokines (IL-4, IL-5, IL-13 and other cytokines that support B-cell activation, the production of non-opsonizing antibodies, allergic reactions and the expulsion of extracellular parasites).

Fucosylation

Addition of the sugar fucose to the oligosaccharide chains (glycans) of membrane proteins through the enzymatic actions of a particular fucosyltransferase.

S1-cleavage site

A specific site in the Notch pre-protein that is targeted by a furin-like protease in the trans-Golgi during the maturation of Notch proteins.

Glycosylation

Enzymatic addition of carbohydrate groups to the side chains of asparagine, serine or threonine residues. This process is important in the synthesis of many secreted and cell-surface proteins.

Trans-endocytosis

The process by which a tightly associated receptor–ligand complex induces invagination of the plasma membrane and internalization of the complex into the ligand-bearing cell to form a membrane-limited transport vesicle.

ADAM proteases

(A disintegrin and metalloproteinase family of proteases). Members of this family contain disintegrin-like and metalloproteinase-like domains and are involved in the regulation of developmental processes, cell–cell interactions and protein processing, including ectodomain shedding.

S2-cleavage site

A specific site in the extracellular domain (close to the membrane) of the Notch heterodimer that becomes accessible to ADAM proteases, which cleave the Notch protein, after ligand binding.

S3-cleavage site

A cleavage site in the transmembrane region (cytoplasmic side) of Notch proteins. Cleavage is thought to occur in endosomes, after cleavage at the S2 site, by a complex of proteins that have γ-secretase activity. In mouse Notch1, this site lies between amino-acid residues 1743 and 1744.

Histone acetyl transferases

Proteins that mediate the enzymatic addition of an acetyl group to the amino group of an amino-terminal residue of the histone complex to facilitate transcription.

Cre–loxP approach

A site-specific recombination system. Two short DNA sequences (loxP sites) are engineered to flank the target DNA. Expression of the recombinase Cre leads to excision of the intervening sequence. Depending on the type of promoter that controls Cre expression, Cre can be expressed at specific times during development or by specific subsets of cells.

Tolerization

Acquired or induced tolerance describes a lack of responsiveness by the immune system to exogenous antigens, a state that is normally created through experimental manipulation. It is important in organ transplantation, when the body is 'forced' to accept an organ from another individual.

Linked suppression

The phenomenon of suppressing immune responses to a specific antigen by co-presenting it simultaneously with another antigen, against which tolerance has previously been established.

Graft-versus-host response

A deleterious process during which immunocompetent donor cells contained in transplanted tissue recognize immunosuppressed host tissues as 'foreign' and mount a destructive immune response against them.

Graft-versus-malignancy response

Similar to a graft-versus-host response, but the cells targeted for destruction in the host are tumorigenic or leukaemic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborne, B., Minter, L. Notch signalling during peripheral T-cell activation and differentiation. Nat Rev Immunol 7, 64–75 (2007). https://doi.org/10.1038/nri1998

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing