Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fungal dysbiosis: immunity and interactions at mucosal barriers

Key Points

  • The term dysbiosis has been used to describe disruptions of microbial communities that lead to a shift in steady-state composition that is distinct from that induced by infections. Recent work has suggested that, in addition to bacterial dysbiosis, fungal dysbiosis might contribute to the pathology of several immune-mediated conditions of non-infectious origin.

  • Fungal dysbiosis is observed in human diseases affecting different barrier surfaces, including the mouth, vagina, skin, lungs and gut.

  • The mucosal immune system can respond to changes in fungal communities; several antifungal immunity pathways such as C-type lectin receptors, and the IL-1β and inflammasome pathways, might have a role in sensing these fluctuations.

  • The interaction between fungi and the host immune system has mainly been studied in the context of infection. However, fungal communities reside on the barrier surfaces of various mammals and are dynamic and responsive to environmental and pathophysiological changes.

  • The mammalian gut is a unique site in which fungal infections are rare but fungal dysbiosis occurs frequently.

  • Dysbiosis probably affects all communities of the microbiota, including bacterial and fungal species.

Abstract

Fungi and mammals share a co-evolutionary history and are involved in a complex web of interactions. Studies focused on commensal bacteria suggest that pathological changes in the microbiota, historically known as dysbiosis, are at the root of many inflammatory diseases of non-infectious origin. However, the importance of dysbiosis in the fungal community — the mycobiota — was only recently acknowledged to have a pathological role, as novel findings have suggested that mycobiota disruption can have detrimental effects on host immunity. Fungal dysbiosis and homeostasis are dynamic processes that are probably more common than actual fungal infections, and therefore constantly shape the immune response. In this Review, we summarize specific mycobiota patterns that are associated with fungal dysbiosis, and discuss how mucosal immunity has evolved to distinguish fungal infections from dysbiosis and how it responds to these different conditions. We propose that gut microbiota dysbiosis is a collective feature of complex interactions between prokaryotic and eukaryotic microbial communities that can affect immunity and that can influence health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mycobiota in health and dysbiosis.
Figure 2: Examples of mucosal immune responses to fungal infection and dysbiosis.
Figure 3: C-type lectin receptor recognition and signalling.

Similar content being viewed by others

References

  1. Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the Earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Remy, W., Taylor, T. N., Hass, H. & Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl Acad. Sci. USA 91, 11841–11843 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Wainright, P. O., Hinkle, G., Sogin, M. L. & Stickel, S. K. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260, 340–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Casadevall, A. Fungi and the rise of mammals. PLoS Pathog. 8, e1002808 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, G. D. & Gordon, S. Fungal beta-glucans and mammalian immunity. Immunity 19, 311–315 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Brown, G. D. et al. Hidden killers: human fungal infections. Sci. Transl Med. 4, 165rv13 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Lanternier, F. et al. Deep dermatophytosis and inherited CARD9 deficiency. N. Engl. J. Med. 369, 1704–1714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Findley, K. et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498, 367–370 (2013). This paper describes the presence and diversity of Malassezia species in the human skin and is by far the most comprehensive culture-independent study of the skin mycobiome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Solomon, K. V. et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351, 1192–1195 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dollive, S. et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE 8, e71806 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoffmann, C. et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE 8, e66019 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). This study shows that the human gut microbiota, including fungi, bacteria and viruses, changes rapidly in response to a diet consisting entirely of either animal products or plant products.

    Article  CAS  PubMed  Google Scholar 

  16. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2016). This study used next-generation sequencing to simultaneously characterize the faecal fungal and bacterial microbiota in patients with ulcerative colitis and Crohn's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Metchnikoff, E. The Prolongation of Life: Optimistic Studies 161–183 (G. P. Putnam's Sons, 1908).

    Google Scholar 

  19. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marsland, B. J. & Gollwitzer, E. S. Host-microorganism interactions in lung diseases. Nat. Rev. Immunol. 14, 827–835 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe 18, 489–500 (2015). This article shows that inflammation, antibiotics and diet independently affect the gut microbiota in patients with Crohn's disease, and identifies an association between antibiotic use and increased fungal load.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liguori, G. et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J. Crohns Colitis 10, 296–305 (2016).

    Article  PubMed  Google Scholar 

  23. Hoarau, G. et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn's disease. mBio 7, e01250-16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wheeler, M. L. et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19, 865–873 (2016). This study shows that targeted fungal community dysbiosis in the mouse gut can have local and systemic effects on immunity and inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bittinger, K. et al. Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol. 15, 487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers — a user's guide. New Phytol. 199, 288–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang, J., Iliev, I. D., Brown, J., Underhill, D. M. & Funari, V. A. Mycobiome: approaches to analysis of intestinal fungi. J. Immunol. Methods 421, 112–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Underhill, D. M. & Iliev, I. D. The mycobiota: interactions between commensal fungi and the host immune system. Nat. Rev. Immunol. 14, 405–416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Motooka, D. et al. Fungal ITS1 deep-sequencing strategies to reconstruct the composition of a 26-species community and evaluation of the gut mycobiota of healthy Japanese individuals. Front. Microbiol. 8, 238 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krasner, R. I., Young, G. & Yudkofsky, P. L. Interactions of oral strains of Candida albicans and lactobacilli. J. Bacteriol. 72, 525–529 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 10, e1003996 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hallen-Adams, H. E. & Suhr, M. J. Fungi in the healthy human gastrointestinal tract. Virulence 8, 352–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Suhr, M. J., Banjara, N. & Hallen-Adams, H. E. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett. Appl. Microbiol. 62, 209–215 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Cutler, J. E., Deepe, G. S. Jr & Klein, B. S. Advances in combating fungal diseases: vaccines on the threshold. Nat. Rev. Microbiol. 5, 13–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Luan, C. et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci. Rep. 5, 7980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li, Q. et al. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease. J. Clin. Gastroenterol. 48, 513–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirsner, J. B. Historical origins of current IBD concepts. World J. Gastroenterol. 7, 175–184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamboli, C. P., Neut, C., Desreumaux, P. & Colombel, J. F. Dysbiosis in inflammatory bowel disease. Gut 53, 1–4 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ott, S. J. et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand. J. Gastroenterol. 43, 831–841 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Qiu, X. et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci. Rep. 5, 10416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chehoud, C. et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21, 1948–1956 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Israeli, E. et al. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 54, 1232–1236 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Standaert-Vitse, A. et al. Candida albicans colonization and ASCA in familial Crohn's disease. Am. J. Gastroenterol. 104, 1745–1753 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Schaffer, T. et al. Anti-Saccharomyces cerevisiae mannan antibodies (ASCA) of Crohn's patients crossreact with mannan from other yeast strains, and murine ASCA IgM can be experimentally induced with Candida albicans. Inflamm. Bowel Dis. 13, 1339–1346 (2007).

    Article  PubMed  Google Scholar 

  46. Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Strati, F. et al. Altered gut microbiota in Rett syndrome. Microbiome 4, 41 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Strati, F. et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Charlson, E. S. et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am. J. Respir. Crit. Care Med. 186, 536–545 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Delhaes, L. et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community — implications for therapeutic management. PLoS ONE 7, e36313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S. H. et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog. 11, e1005308 (2015). This paper shows the presence of stable fungal communities in the lungs of patients with cystic fibrosis and identifies mutations in the transcriptional repressor NRG1 in C. albicans that seem to be a common mechanism of adaptation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willger, S. D. et al. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome 2, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. van Woerden, H. C. et al. Differences in fungi present in induced sputum samples from asthma patients and non-atopic controls: a community based case control study. BMC Infect. Dis. 13, 69 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Noverr, M. C., Noggle, R. M., Toews, G. B. & Huffnagle, G. B. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect. Immun. 72, 4996–5003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, Y. G. et al. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15, 95–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Farr, A. et al. Effect of asymptomatic vaginal colonization with Candida albicans on pregnancy outcome. Acta Obstet. Gynecol. Scand. 94, 989–996 (2015).

    Article  PubMed  Google Scholar 

  57. Drell, T. et al. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS ONE 8, e54379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Merenstein, D. et al. Colonization by Candida species of the oral and vaginal mucosa in HIV-infected and noninfected women. AIDS Res. Hum. Retroviruses 29, 30–34 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guo, R. et al. Increased diversity of fungal flora in the vagina of patients with recurrent vaginal candidiasis and allergic rhinitis. Microb. Ecol. 64, 918–927 (2012).

    Article  PubMed  Google Scholar 

  60. Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oh, J. et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 23, 2103–2114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smeekens, S. P. et al. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J. Innate Immun. 6, 253–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Kalan, L. et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. mBio 7, e01058-16 (2016). This study shows that fungal communities in diabetic foot ulcers are associated with poor outcomes and longer healing times.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Strati, F. et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 7, 1227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jo, J. H. et al. Diverse human skin fungal communities in children converge in adulthood. J. Invest. Dermatol. 136, 2356–2363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Conti, H. R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hise, A. G. et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Luca, A. et al. IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog. 9, e1003486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kashem, S. W. et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity 42, 356–366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gessner, M. A. et al. Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect. Immun. 80, 410–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jhingran, A. et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 11, e1004589 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rivera, A. et al. Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J. Exp. Med. 208, 369–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trautwein-Weidner, K. et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog. 11, e1005164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lionakis, M. S. et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Invest. 123, 5035–5051 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Conti, H. R. et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe 20, 606–617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Netea, M. G., Joosten, L. A., van der Meer, J. W., Kullberg, B. J. & van de Veerdonk, F. L. Immune defence against Candida fungal infections. Nat. Rev. Immunol. 15, 630–642 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Plato, A., Hardison, S. E. & Brown, G. D. Pattern recognition receptors in antifungal immunity. Semin. Immunopathol. 37, 97–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Taylor, P. R. et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Marakalala, M. J. et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 9, e1003315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang, C. et al. Inhibition of dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18, 183–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64–68 (2016). This study identifies a C. albicans toxin that directly disrupts the epithelial layer, triggers a danger response and leads to epithelial activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pierce, J. V. & Kumamoto, C. A. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. mBio 3, e00117-12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Vries, H. S. et al. Genetic association analysis of the functional c.714T>G polymorphism and mucosal expression of dectin-1 in inflammatory bowel disease. PLoS ONE 4, e7818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Plantinga, T. S. et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis. 49, 724–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. van der Velden, W. J. et al. Role of the mycobiome in human acute graft-versus-host disease. Biol. Blood Marrow Transplant. 19, 329–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Saijo, S. et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Wuthrich, M. et al. Fonsecaea pedrosoi-induced Th17-cell differentiation in mice is fostered by dectin-2 and suppressed by mincle recognition. Eur. J. Immunol. 45, 2542–2552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ishikawa, T. et al. Identification of distinct ligands for the C-type lectin receptors mincle and dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13, 477–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Barrett, N. A., Maekawa, A., Rahman, O. M., Austen, K. F. & Kanaoka, Y. Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. J. Immunol. 182, 1119–1128 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakamura, Y. et al. Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect. Immun. 83, 671–681 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hu, X. P. et al. Dectin-2 polymorphism associated with pulmonary cryptococcosis in HIV-uninfected Chinese patients. Med. Mycol. 53, 810–816 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Zhao, X. Q. et al. C-Type lectin receptor dectin-3 mediates trehalose 6,6′-dimycolate (TDM)-induced mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-kappaB activation. J. Biol. Chem. 289, 30052–30062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhu, L. L. et al. C-Type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, T. et al. Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut. PLoS Pathog. 12, e1005662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Bishu, S. et al. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections. Infect. Immun. 82, 1173–1180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Drummond, R. A. et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 11, e1005293 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, X. et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J. Allergy Clin. Immunol. 133, 905–908.e3 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Lanternier, F. et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J. Allergy Clin. Immunol. 135, 1558–1568.e2 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. International HapMap Consortium et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  105. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sokol, H. et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology 145, 591–601.e3 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Drummond, R. A. & Lionakis, M. S. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front. Cell. Infect. Microbiol. 6, 39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Whibley, N. et al. Delinking CARD9 and IL-17: CARD9 protects against Candida tropicalis infection through a TNF-α-dependent, IL-17-independent mechanism. J. Immunol. 195, 3781–3792 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Conti, H. R. & Gaffen, S. L. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J. Immunol. 195, 780–788 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Borghi, M. et al. Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra. Cell Host Microbe 18, 198–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Tomalka, J. et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 7, e1002379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lev-Sagie, A. et al. Polymorphism in a gene coding for the inflammasome component NALP3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome. Am J. Obstet. Gynecol. 200, 303.e1–303.e6 (2009).

    Article  CAS  Google Scholar 

  116. Jaeger, M. et al. Association of a variable number tandem repeat in the NLRP3 gene in women with susceptibility to RVVC. Eur. J. Clin. Microbiol. Infect. Dis. 35, 797–801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao, X. et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat. Med. 23, 337–346 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wirnsberger, G. et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat. Med. 22, 915–923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xiao, Y. et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat. Med. 22, 906–914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wolfson, S. A. Black hairy tongue associated with penicillin therapy. J. Am. Med. Assoc. 140, 1206–1208 (1949).

    Article  CAS  PubMed  Google Scholar 

  122. Boris, S. & Barbes, C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect. 2, 543–546 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Noverr, M. C. & Huffnagle, G. B. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 72, 6206–6210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lynch, A. S. & Robertson, G. T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 59, 415–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Pande, K., Chen, C. & Noble, S. M. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat. Genet. 45, 1088–1091 (2013). This study shows that in the gut, C. albicans adopts a commensal form induced through downregulation of virulence factors and induction of metabolic functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fan, D. et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat. Med. 21, 808–814 (2015). This work shows that commensal bacteria can confer resistance to C. albicans by promoting the HIF1α-mediated expression of the antimicrobial peptide LL-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. de Bekker, C. et al. Species-specific ant brain manipulation by a specialized fungal parasite. BMC Evol. Biol. 14, 166 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lin, C. H. et al. Identification of a major epitope by anti-interferon-gamma autoantibodies in patients with mycobacterial disease. Nat. Med. 22, 994–1001 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Sterkel, A. K. et al. Fungal mimicry of a mammalian aminopeptidase disables innate immunity and promotes pathogenicity. Cell Host Microbe 19, 361–374 (2016). This study shows that the pathogenic yeast Blastomyces dermatitidis produces a close mimic of a mammalian ectopeptidase, which interferes with innate antifungal responses in the lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Poulsen, M. & Boomsma, J. J. Mutualistic fungi control crop diversity in fungus-growing ants. Science 307, 741–744 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Nelson, K. E. & Williams, C. M. Infectious Disease Epidemiology: Theory and Practice 3rd edn (Jones & Bartlett Learning, 2014).

    Google Scholar 

  133. Lane, N. The unseen world: reflections on Leeuwenhoek (1677) 'Concerning little animals'. Phil. Trans. R. Soc. B Biol. Sci. 370, 20140344 (2015).

    Article  Google Scholar 

  134. Pasteur, L. & Illo, J. Pasteur and rabies: an interview of 1882. Med. Hist. 40, 373–377 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Henle, J. On Miasmata and Contagia (Johns Hopkins Press, 1938).

    Google Scholar 

  136. Koch, R. An address on bacteriological research. Br. Med. J. 2, 380–383 (1890).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Evans, A. S. Causation and disease: the Henle–Koch postulates revisited. Yale J. Biol. Med. 49, 175–195 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Fredricks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Byrd, A. L. & Segre, J. A. Infectious disease. Adapting Koch's postulates. Science 351, 224–226 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Olesen, S. W. & Alm, E. J. Dysbiosis is not an answer. Nat. Microbiol. 1, 16228 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Iliev laboratory and the New York Host-Mycobiota Group for helpful suggestions related to the manuscript. This work was funded by the US National Institutes of Health (grants DK098310 and AI123819 to I.D.I.), Kenneth Rainin Foundation (Innovator and Breakthrough awards to I.D.I), Swiss National Science Foundation (fellowship P2ZHP3_164850 to I.L.) and support from the Jill Roberts Institute for Research in IBD. The authors apologize to all the contributors to this field whose work could not be cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliyan D. Iliev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Symbiosis

An ecological relationship between different species that persistently live in close contact. It includes relationships such as mutualism, parasitism and commensalism.

Dysbiosis

A generalized term indicating changes in the composition of the microbiota that is caused by multiple factors. It can be either a cause or a consequence of disease. The term is undergoing revision in light of recent advances in microbiome science.

Internal transcribed spacer

(ITS). A sequence in the fungal genome positioned between the 18S and 5.8S (ITS1) or the 5.8S and 28S (ITS2) fungal rDNA that is widely used in mycobiome next-generation sequencing. The variability of the ITS regions enables them to be used to classify fungal genera and species.

Operational taxonomic units

(OTUs). Clusters of marker gene sequences (for example, 16S rRNA or internal transcribed spacer) based on sequence similarity used for taxonomy-independent community analysis.

Richness

The number of different species represented in an ecological community.

Commensalism

A relationship between two species through which one organism benefits from the other without affecting it.

Inflammatory bowel disease

(IBD). A relapsing and remitting condition of complex aetiology. It is characterized by inflammation of the lower digestive tract with possible extra-intestinal manifestations. The most common types of IBD are Crohn's disease and ulcerative colitis.

Alpha diversity

A biodiversity measure of the mean species diversity within an individual environmental habitat.

Onychomycosis

A fungal infection of the fingernails or toenails.

Chromoblastomycosis

A chronic localized infection of the skin and subcutaneous tissue caused by pigmented fungi that contain sclerotic bodies.

Phaeohyphomycosis

A heterogeneous group of fungal infections that are characterized by the presence of pigmented fungal cells.

Deep-seated dermatophytosis

A fungal infection of deep keratinized tissue (including skin, hair and claws).

Secukinumab

A human monoclonal antibody that binds to IL-17A and inhibits its functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iliev, I., Leonardi, I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat Rev Immunol 17, 635–646 (2017). https://doi.org/10.1038/nri.2017.55

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2017.55

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing