Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Immunity by equilibrium

Abstract

The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The equilibrium model of immunity.
Figure 2: Tolerance in the equilibrium model of immunity.
Figure 3: Microorganisms in the equilibrium model of immunity.

References

  1. Burnet, F. M. & Fenner, F. The Production of Antibodies 2nd edn (Macmillan and Co., 1949).

    Google Scholar 

  2. Jerne, N. K. The somatic generation of immune recognition. Eur. J. Immunol. 1, 1–9 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Pradeu, T., Jaeger, S. & Vivier, E. The speed of change: towards a discontinuity theory of immunity? Nat. Rev. Immunol. 13, 764–769 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Jerne, N. K. The natural-selection theory of antibody formation. Proc. Natl Acad. Sci. USA 41, 849–857 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ehrlich, P. in Nobel Lecture, December 11, 1908 (Elsevier Publishing Company, 1967).

    Google Scholar 

  7. Burnet, F. M. The Clonal Selection Theory of Acquired Immunity (Vanderbilt Univ. Press, 1959).

    Book  Google Scholar 

  8. Weigert, M. G., Cesari, I. M., Yonkovich, S. J. & Cohn, M. Variability in the lambda light chain sequences of mouse antibody. Nature 228, 1045–1047 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl Acad. Sci. USA 73, 3628–3632 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  11. Sansonetti, P. J. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4, 953–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Sansonetti, P. J. & Di Santo, J. P. Debugging how bacteria manipulate the immune response. Immunity 26, 149–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Cahenzli, J., Koller, Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14, 559–570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation Delivered at Pasteur Institute in 1891 (Dover Press, 1989).

    Google Scholar 

  16. Eberl, G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 3, 450–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Jerne, N. K. Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C, 373–389 (1974).

    CAS  Google Scholar 

  18. Hoffmann, G. W. A theory of regulation and self-nonself discrimination in an immune network. Eur. J. Immunol. 5, 638–647 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Rowley, D. A., Kohler, H. & Cowan, J. D. An immunologic network. Contemp. Top. Immunobiol. 9, 205–230 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Gershon, R. K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gershon, R. K. A disquisition on suppressor T cells. Transplant Rev. 26, 170–185 (1975).

    CAS  PubMed  Google Scholar 

  22. Germain, R. N. Maintaining system homeostasis: the third law of Newtonian immunology. Nat. Immunol. 13, 902–906 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mauri, C. & Bosma, A. Immune regulatory function of B cells. Annu. Rev. Immunol. 30, 221–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Serafini, P., Borrello, I. & Bronte, V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin. Cancer Biol. 16, 53–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Matzinger, P. Friendly and dangerous signals: is the tissue in control? Nat. Immunol. 8, 11–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Trinchieri, G. & Gerosa, F. Immunoregulation by interleukin-12. J. Leukoc. Biol. 59, 505–511 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Eberl, G., Colonna, M., Di Santo, J. P. & McKenzie, A. N. Innate lymphoid cells: a new paradigm in immunology. Science 348, aaa6566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allen, J. E. & Sutherland, T. E. Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin. Semin. Immunol. 26, 329–340 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saenz, S. A., Taylor, B. C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Knipper, J. A. et al. Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 43, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tauber, A. I. & Chernyak, L. Metchnikoff and the Origins of Immunology: From Metaphor to Theory (Oxford Univ. Press, 1991).

    Google Scholar 

  46. Besnard, A. G. et al. Dual role of IL-22 in allergic airway inflammation and its cross-talk with IL-17A. Am. J. Respir. Crit. Care Med. 183, 1153–1163 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Matzinger, P. & Kamala, T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11, 221–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Forrester, J. V., Xu, H., Kuffova, L., Dick, A. D. & McMenamin, P. G. Dendritic cell physiology and function in the eye. Immunol. Rev. 234, 282–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mkaddem, S. B. et al. IgA, IgA receptors, and their anti-inflammatory properties. Curr. Top. Microbiol. Immunol. 382, 221–235 (2014).

    PubMed  Google Scholar 

  52. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wohlfert, E. A. et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Wohlfert, E. & Belkaid, Y. Plasticity of Treg at infected sites. Mucosal Immunol. 3, 213–215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hams, E., Locksley, R. M., McKenzie, A. N. & Fallon, P. G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, H. Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Bleriot, C. et al. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42, 145–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Cannon, W. B. Organization for physiological homeostasis. Phys. Rev. IX, 399–431 (1929).

    Google Scholar 

  64. Wick, G. et al. The immunology of fibrosis. Annu. Rev. Immunol. 31, 107–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van Praet, J. T. et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 34, 466–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Prioult, G. & Nagler-Anderson, C. Mucosal immunity and allergic responses: lack of regulation and/or lack of microbial stimulation? Immunol. Rev. 206, 204–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nat. Rev. Immunol. 10, 861–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Foliaki, S. et al. Antibiotic use in infancy and symptoms of asthma, rhinoconjunctivitis, and eczema in children 6 and 7 years old: International Study of Asthma and Allergies in Childhood Phase III. J. Allergy Clin. Immunol. 124, 982–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Droste, J. H. et al. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin. Exp. Allergy 30, 1547–1553 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hill, D. A. et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat. Med. 18, 538–546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moro, K. et al. Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat. Immunol. 17, 76–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Duerr, C. U. et al. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. Nat. Immunol. 17, 65–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Thomas, S. A. & Palmiter, R. D. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387, 94–97 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, M. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Burcelin, R., Garidou, L. & Pomie, C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin. Immunol. 24, 67–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Kim, K. A., Gu, W., Lee, I. A., Joh, E. H. & Kim, D. H. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS ONE 7, e47713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang, J. Y. et al. Enteric viruses ameliorate gut inflammation via toll-like receptor 3 and toll-like receptor 7-mediated interferon-β production. Immunity 44, 889–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Henry, T. et al. Type I IFN signaling constrains IL-17A/F secretion by γδ T cells during bacterial infections. J. Immunol. 184, 3755–3767 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, V. et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 9, 777–786 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Chong, W. P. et al. NK-DC crosstalk controls the autopathogenic Th17 response through an innate IFN-γ-IL-27 axis. J. Exp. Med. 212, 1739–1752 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Finlay, C. M. et al. Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia. J. Immunol. 196, 703–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Reddy, A. & Fried, B. An update on the use of helminths to treat Crohn's and other autoimmunune diseases. Parasitol. Res. 104, 217–221 (2009).

    Article  PubMed  Google Scholar 

  91. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kriegel, M. A. et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 108, 11548–11553 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sofi, M. H. et al. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 63, 632–644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Navarini, A. A. et al. Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc. Natl Acad. Sci. USA 103, 15535–15539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alonso, J. M. et al. A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice. FEMS Microbiol. Lett. 222, 99–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. McCullers, J. A. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat. Rev. Microbiol. 12, 252–262 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Osborne, L. C. et al. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 345, 578–582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Baldridge, M. T. et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science 347, 266–269 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Skov, M., Poulsen, L. K. & Koch, C. Increased antigen-specific Th-2 response in allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis. Pediatr. Pulmonol 27, 74–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Margalit, A. & Kavanagh, K. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol. Rev. 39, 670–687 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, P. et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J. Exp. Med. 201, 779–791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Coffman, R. L., Lebman, D. A. & Shrader, B. Transforming growth factor β specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170, 1039–1044 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Shalapour, S. et al. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521, 94–98 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sprent, J., Lo, D., Gao, E. K. & Ron, Y. T cell selection in the thymus. Immunol. Rev. 101, 173–190 (1988).

    Article  CAS  PubMed  Google Scholar 

  108. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  PubMed  Google Scholar 

  109. Vukmanovic, S., Bevan, M. J. & Hogquist, K. A. The specificity of positive selection: MHC and peptides. Immunol. Rev. 135, 51–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Annacker, O., Pimenta-Araujo, R., Burlen-Defranoux, O. & Bandeira, A. On the ontogeny and physiology of regulatory T cells. Immunol. Rev. 182, 5–17 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kolodin, D. et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell. Metab. 21, 543–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Streilein, J. W. Neonatal tolerance: towards an immunogenetic definition of self. Immunol. Rev. 46, 123–146 (1979).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, H. Y. & Weiner, H. L. Oral tolerance. Immunol. Res. 28, 265–284 (2003).

    Article  PubMed  Google Scholar 

  118. Cerutti, A., Chen, K. & Chorny, A. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29, 273–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med. 208, 125–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Datta, S. K. et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc. Natl Acad. Sci. USA 107, 10638–10643 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Snider, D. P., Marshall, J. S., Perdue, M. H. & Liang, H. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J. Immunol. 153, 647–657 (1994).

    CAS  PubMed  Google Scholar 

  122. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res, 3–11 (1991).

  123. Tsung, K. & Norton, J. A. Lessons from Coley's Toxin. Surg. Oncol. 15, 25–28 (2006).

    Article  PubMed  Google Scholar 

  124. Silverstein, M. J., DeKernion, J. & Morton, D. L. Malignant melanoma metastatic to the bladder. Regression following intratumor injection of BCG vaccine. JAMA 229, 688 (1974).

    Article  CAS  PubMed  Google Scholar 

  125. Solt, L. A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486–490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Finlay, C. M., Walsh, K. P. & Mills, K. H. Induction of regulatory cells by helminth parasites: exploitation for the treatment of inflammatory diseases. Immunol. Rev. 259, 206–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Weinstock, J. V. & Elliott, D. E. Helminth infections decrease host susceptibility to immune-mediated diseases. J. Immunol. 193, 3239–3247 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Driss, V. et al. The schistosome glutathione S-transferase P28GST, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils. Mucosal Immunol. 9, 322–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1989. 54: 1–13 J. Immunol. 191, 4475–4487 (2013).

    CAS  PubMed  Google Scholar 

  132. Zhu, J. & Paul, W. E. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol. Rev. 238, 247–262 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Serafini, N., Vosshenrich, C. A. & Di Santo, J. P. Transcriptional regulation of innate lymphoid cell fate. Nat. Rev. Immunol. 15, 415–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell 151, 289–303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Usui, T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755–766 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity 32, 616–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448, 1058–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol. 13, 1010–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tindemans, I., Serafini, N., Di Santo, J. P. & Hendriks, R. W. GATA-3 function in innate and adaptive immunity. Immunity 41, 191–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Yagi, R. et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40, 378–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhong, C. et al. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nat. Immunol. 17, 169–178 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks M. Daëron, T. Pradeu, N. Cerf-Bensussan, A. Freitas and B. Marsland for the many discussions, ideas, corrections and critical reading of the manuscript. The author also thanks members of the Microenvironment and Immunity unit of the Institut Pasteur for discussions and experiments over the years that led to the ideas presented in this Essay, as well as the students and postdoctoral researchers of the Department of Immunology of the Institut Pasteur for the Forest seminar series and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Eberl.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberl, G. Immunity by equilibrium. Nat Rev Immunol 16, 524–532 (2016). https://doi.org/10.1038/nri.2016.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.75

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing