Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations

Key Points

  • The extracellular matrices (ECMs) of connective tissues are crucial for normal development and tissue function, and mutations in ECM genes result in a wide range of serious inherited disorders. These include skeletal dysplasias, such osteogenesis imperfecta, and a spectrum of chondrodysplasias, Ehlers–Danlos syndrome, forms of muscular dystrophy, epidermolysis bullosa and Alport syndrome

  • Mutations cause ECM dysfunction by several mechanisms. First, secretion of ECM components can be reduced by mutations affecting synthesis or structural mutations causing cellular retention and/or degradation.

  • The secretion of mutant proteins can also disturb crucial interactions with consequent effects on structure and stability of the ECM.

  • Recent experiments also show that mutant misfolded extracellular matrix proteins such as cartilage oligomeric protein (COMP), collagens and matrilin 3 induce significant endoplasmic reticulum (ER) stress, and trigger the unfolded protein response (UPR). UPR can lead to deleterious downstream consequences, such as apoptosis and altered gene expression, and this can contribute to the molecular pathology of the mutations.

  • The emerging importance of ER stress in the pathology of a range of connective tissue disorders offers the possibility of new treatment strategies. These strategies target ER stress and seek to manipulate this pathway by reducing either the mutant protein load or the deleterious cellular consequences of ER-stress.

  • The pathophysiology of the many inherited connective tissue disorders resulting from ECM protein misfolding mutations most probably results from the combined effects of the extracellular consequences of reduced or abnormal protein on matrix structure and function, and the cellular consequences of ER stress.

Abstract

Tissue-specific extracellular matrices (ECMs) are crucial for normal development and tissue function, and mutations in ECM genes result in a wide range of serious inherited connective tissue disorders. Mutations cause ECM dysfunction by combinations of two mechanisms. First, secretion of the mutated ECM components can be reduced by mutations affecting synthesis or by structural mutations causing cellular retention and/or degradation. Second, secretion of mutant protein can disturb crucial ECM interactions, structure and stability. Moreover, recent experiments suggest that endoplasmic reticulum (ER) stress, caused by mutant misfolded ECM proteins, contributes to the molecular pathology. Targeting ER stress might offer a new therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular assembly pathways.
Figure 2: The extracellular matrix (ECM) disease paradigm.

Similar content being viewed by others

References

  1. Iozzo, R. V. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J. Biol. Chem. 274, 18843–18846 (1999).

    CAS  PubMed  Google Scholar 

  2. Svensson, L., Oldberg, A. & Heinegard, D. Collagen binding proteins. Osteoarthr. Cart. 9 (Suppl. A), S23–S28 (2001).

    Google Scholar 

  3. Eyre, D. R. Collagens and cartilage matrix homeostasis. Clin. Orthop. Relat. Res. S118–S122 (2004).

  4. Alford, A. I. & Hankenson, K. D. Matricellular proteins: extracellular modulators of bone development, remodeling, and regeneration. Bone 38, 749–757 (2006).

    CAS  PubMed  Google Scholar 

  5. Heino, J. The collagen family members as cell adhesion proteins. Bioessays 29, 1001–1010 (2007).

    CAS  PubMed  Google Scholar 

  6. Lamoureux, F., Baud'huin, M., Duplomb, L., Heymann, D. & Redini, F. Proteoglycans: key partners in bone cell biology. Bioessays 29, 758–771 (2007).

    CAS  PubMed  Google Scholar 

  7. Kadler, K. E., Baldock, C., Bella, J. & Boot-Handford, R. P. Collagens at a glance. J. Cell Sci. 120, 1955–1958 (2007).

    CAS  PubMed  Google Scholar 

  8. Myllyharju, J. & Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43 (2004). Succinct review of the collagen protein family, including supramolecular structure, biosynthesis and mutations in collagens and their modifying enzymes.

    CAS  PubMed  Google Scholar 

  9. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gieni, R. S. & Hendzel, M. J. Mechanotransduction from the ECM to the genome: are the pieces now in place? J. Cell Biochem. 104, 1964–1987 (2007).

    Google Scholar 

  11. Danen, E. H. & Sonnenberg, A. Integrins in regulation of tissue development and function. J. Pathol. 201, 632–641 (2003).

    CAS  PubMed  Google Scholar 

  12. Whitelock, J. M., Melrose, J. & Iozzo, R. V. Diverse cell signaling events modulated by perlecan. Biochemistry 47, 11174–11183 (2008).

    CAS  PubMed  Google Scholar 

  13. ten Dijke, P. & Arthur, H. M. Extracellular control of TGFβ signalling in vascular development and disease. Nature Rev. Mol. Cell Biol. 8, 857–869 (2007).

    CAS  Google Scholar 

  14. Aszodi, A., Legate, K. R., Nakchbandi, I. & Fassler, R. What mouse mutants teach us about extracellular matrix function. Annu. Rev. Cell Dev. Biol. 22, 591–621 (2006). Comprehensive review on the use of mutant mouse models to explore the structure and function of the ECM.

    CAS  PubMed  Google Scholar 

  15. Frischmeyer, P. A. & Dietz, H. C. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet. 8, 1893–1900 (1999).

    CAS  PubMed  Google Scholar 

  16. Schell, T., Kulozik, A. E. & Hentze, M. W. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol. 3, REVIEWS1006 (2002).

    PubMed  PubMed Central  Google Scholar 

  17. Weischenfeldt, J., Lykke-Andersen, J. & Porse, B. Messenger RNA surveillance: neutralizing natural nonsense. Curr. Biol. 15, R559–R562 (2005).

    CAS  PubMed  Google Scholar 

  18. Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007). Reviews the molecular mechanisms of NMD.

    CAS  PubMed  Google Scholar 

  19. Willing, M. C. et al. Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. Am. J. Hum. Genet. 55, 638–647 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dalgleish, R. The human type I collagen mutation database. Nucleic Acids Res. 25, 181–187 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Richards, A. J. et al. High efficiency of mutation detection in type 1 Stickler syndrome using a two-stage approach: vitreoretinal assessment coupled with exon sequencing for screening COL2A1. Hum. Mutat. 27, 696–704 (2006).

    CAS  PubMed  Google Scholar 

  22. Snead, M. P. & Yates, J. R. Clinical and molecular genetics of Stickler syndrome. J. Med. Genet. 36, 353–359 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamandé, S. R. et al. Reduced collagen VI causes Bethlem myopathy: a heterozygous COL6A1 nonsense mutation results in mRNA decay and functional haploinsufficiency. Hum. Mol. Genet. 7, 981–989 (1998).

    PubMed  Google Scholar 

  24. Bateman, J. F., Wilson, R., Freddi, S., Lamande, S. R. & Savarirayan, R. Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum. Mutat. 25, 525–534 (2005).

    CAS  PubMed  Google Scholar 

  25. Lucarini, L. et al. A homozygous COL6A2 intron mutation causes in-frame triple-helical deletion and nonsense-mediated mRNA decay in a patient with Ullrich congenital muscular dystrophy. Hum. Genet. 117, 460–466 (2005).

    CAS  PubMed  Google Scholar 

  26. Peat, R. A., Baker, N. L., Jones, K. J., North, K. N. & Lamandé, S. R. Variable penetrance of COL6A1 null mutations: implications for prenatal diagnosis and genetic counselling in Ullrich congenital muscular dystrophy families. Neuromuscul. Disord. 17, 547–557 (2007).

    PubMed  Google Scholar 

  27. Christiano, A. M., Amano, S., Eichenfield, L. F., Burgeson, R. E. & Uitto, J. Premature termination codon mutations in the type VII collagen gene in recessive dystrophic epidermolysis bullosa result in nonsense-mediated mRNA decay and absence of functional protein. J. Invest. Dermatol. 109, 390–394 (1997).

    CAS  PubMed  Google Scholar 

  28. Hovnanian, A. et al. Characterization of 18 new mutations in COL7A1 in recessive dystrophic epidermolysis bullosa provides evidence for distinct molecular mechanisms underlying defective anchoring fibril formation. Am. J. Hum. Genet. 61, 599–610 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bateman, J. F., Freddi, S., Nattrass, G. & Savarirayan, R. Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum. Mol. Genet. 12, 217–225 (2003).

    CAS  PubMed  Google Scholar 

  30. Khajavi, M., Inoue, K. & Lupski, J. R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur. J. Hum. Genet. 14, 1074–1081 (2006).

    CAS  PubMed  Google Scholar 

  31. Tan, J. T. et al. Competency for nonsense-mediated reduction in collagen X mRNA is specified by the 3′ UTR and corresponds to the position of mutations in Schmid metaphyseal chondrodysplasia. Am. J. Hum. Genet. 82, 786–793 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Colige, A. et al. Novel types of mutation responsible for the dermatosparactic type of Ehlers–Danlos syndrome (type VIIC) and common polymorphisms in the ADAMTS2 gene. J. Invest. Dermatol. 123, 656–663 (2004).

    CAS  PubMed  Google Scholar 

  33. Brunetti-Pierri, N. et al. X-linked recessive chondrodysplasia punctata: spectrum of arylsulfatase E gene mutations and expanded clinical variability. Am. J. Med. Genet. A 117A, 164–168 (2003).

    PubMed  Google Scholar 

  34. Dawson, P. A. & Markovich, D. Pathogenetics of the human SLC26 transporters. Curr. Med. Chem. 12, 385–396 (2005).

    CAS  PubMed  Google Scholar 

  35. Ha-Vinh, R. et al. Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am. J. Med. Genet. A 131, 115–120 (2004).

    PubMed  Google Scholar 

  36. Salo, A. M. et al. A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am. J. Hum. Genet. 83, 495–503 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Morello, R. et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006). With reference 38 this study provides new insights into how mutations affecting the collagen folding machinery, in addition to collagen I mutations, can cause collagen defects and OI.

    CAS  PubMed  Google Scholar 

  38. Baldridge, D. et al. CRTAP and LEPRE1 mutations in recessive osteogenesis imperfecta. Hum. Mutat. 29, 1435–1442 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vranka, J. A., Sakai, L. Y. & Bachinger, H. P. Prolyl 3-hydroxylase 1, enzyme characterization and identification of a novel family of enzymes. J. Biol. Chem. 279, 23615–23621 (2004).

    CAS  PubMed  Google Scholar 

  40. Canty, E.G. & Kadler, K. E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118, 1341–1353 (2005).

    CAS  PubMed  Google Scholar 

  41. Kielty, C. M., Hopkinson, I. & Grant, M. E. in Connective Tissue and its Heritable Disorders. Molecular, Genetic, and Medical Aspects. (eds Royce, P. M. & Steinmann, B.) 103–147 (Wiley-Liss, Inc., New York, 1993).

    Google Scholar 

  42. Khoshnoodi, J., Cartailler, J. P., Alvares, K., Veis, A. & Hudson, B. G. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J. Biol. Chem. 281, 38117–38121 (2006).

    CAS  PubMed  Google Scholar 

  43. Chessler, S. D. & Byers, P. H. BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta. J. Biol. Chem. 268, 18226–18233 (1993). A seminal paper that identified binding of the ER chaperone BiP to mutant procollagen, providing the first molecular evidence for what subsequently became known as an ER stress response to mutant collagen I in OI.

    CAS  PubMed  Google Scholar 

  44. Lamandé, S. R. et al. Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro alpha 1 (I) chain carboxyl-terminal propeptide which impair subunit assembly. J. Biol. Chem. 270, 8642–8649 (1995). This paper described the role of ERAD in the degradation of mutant misfolded type I procollagen, a further early indication that ER stress might be involved with these collagen I mutations

    PubMed  Google Scholar 

  45. Fitzgerald, J., Lamandé, S. R. & Bateman, J. F. Proteasomal degradation of unassembled mutant type I collagen pro-alpha1(I) chains. J. Biol. Chem. 274, 27392–27398 (1999).

    CAS  PubMed  Google Scholar 

  46. Chipman, S. D. et al. Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc. Natl Acad. Sci. USA 90, 1701–1705 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernandes, R. J., Seegmiller, R. E., Nelson, W. R. & Eyre, D. R. Protein consequences of the Col2a1 C-propeptide mutation in the chondrodysplastic Dmm mouse. Matrix Biol. 22, 449–453 (2003).

    CAS  PubMed  Google Scholar 

  48. Bogin, O. et al. Insight into Schmid metaphyseal chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer. Structure 10, 165–173 (2002).

    CAS  PubMed  Google Scholar 

  49. Wilson, R., Freddi, S. & Bateman, J. F. Collagen X chains harboring Schmid metaphyseal chondrodysplasia NC1 domain mutations are selectively retained and degraded in stably transfected cells. J. Biol. Chem. 277, 12516–12524 (2002).

    CAS  PubMed  Google Scholar 

  50. Wilson, R., Freddi, S., Chan, D., Cheah, K. S. & Bateman, J. F. Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J. Biol. Chem. 280, 15544–15552 (2005).

    CAS  PubMed  Google Scholar 

  51. Ho, M. S. et al. COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum. Mol. Genet. 16, 1201–1215 (2007).

    CAS  PubMed  Google Scholar 

  52. Tsang, K. Y. et al. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol. 5, e44 (2007). An important paper providing the first description of alterations to gene expression and cellular differentiation as a consequence of mutant collagen-induced ER-stress in vivo.

    PubMed  PubMed Central  Google Scholar 

  53. Ishida, Y. et al. Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell 17, 2346–2355 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Marini, J. C. et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28, 209–221 (2007). A comprehensive review of collagen I mutations in OI and discussion of the possible molecular effects of the mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Makareeva, E. et al. Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J. Biol. Chem. 283, 4787–4798 (2008).

    CAS  PubMed  Google Scholar 

  56. Forlino, A., Kuznetsova, N. V., Marini, J. C. & Leikin, S. Selective retention and degradation of molecules with a single mutant alpha1(I) chain in the Brtl IV mouse model of OI. Matrix Biol. 26, 604–614 (2007).

    CAS  PubMed  Google Scholar 

  57. Ding, W. X. & Yin, X. M. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4, 141–150 (2008).

    CAS  PubMed  Google Scholar 

  58. Bateman, J. F. & Golub, S. B. Deposition and selective degradation of structurally-abnormal type I collagen in a collagen matrix produced by osteogenesis imperfecta fibroblasts in vitro. Matrix Biol. 14, 251–262 (1994).

    CAS  PubMed  Google Scholar 

  59. Baker, N. L. et al. Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy. Hum. Mol. Genet. 14, 279–293 (2005).

    CAS  PubMed  Google Scholar 

  60. Lamandé, S. R., Shields, K. A., Kornberg, A. J., Shield, L. K. & Bateman, J. F. Bethlem myopathy and engineered collagen VI triple helical deletions prevent intracellular multimer assembly and protein secretion. J. Biol. Chem. 274, 21817–21822 (1999).

    PubMed  Google Scholar 

  61. Pace, R. A. et al. Collagen VI glycine mutations: Perturbed assembly and a spectrum of clinical severity. Ann. Neurol. 64, 294–303 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Posey, K. L., Yang, Y., Veerisetty, A. C., Sharan, S. K. & Hecht, J. T. Model systems for studying skeletal dysplasias caused by TSP-5/COMP mutations. Cell. Mol. Life Sci. 65, 687–699 (2008).

    CAS  PubMed  Google Scholar 

  63. Briggs, M. D. & Chapman, K. L. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations. Hum. Mutat. 19, 465–478 (2002).

    CAS  PubMed  Google Scholar 

  64. Holden, P. et al. Cartilage oligomeric matrix protein interacts with type IX collagen, and disruptions to these interactions identify a pathogenetic mechanism in a bone dysplasia family. J. Biol. Chem. 276, 6046–6055 (2001). Describes the dominant negative effect of COMP mutations that cause intracellular retention of its interacting partners.

    CAS  PubMed  Google Scholar 

  65. Merritt, T. M., Bick, R., Poindexter, B. J., Alcorn, J. L. & Hecht, J. T. Unique matrix structure in the rough endoplasmic reticulum cisternae of pseudoachondroplasia chondrocytes. Am. J. Pathol. 170, 293–300 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Malhotra, J. D. & Kaufman, R. J. The endoplasmic reticulum and the unfolded protein response. Semin. Cell Dev. Biol. 18, 716–731 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bernales, S., Papa, F. R. & Walter, P. Intracellular signaling by the unfolded protein response. Annu. Rev. Cell Dev. Biol. 22, 487–508 (2006).

    CAS  PubMed  Google Scholar 

  68. Rutkowski, D. T. & Kaufman, R. J. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem. Sci. 32, 469–476 (2007).

    CAS  PubMed  Google Scholar 

  69. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Rev. Mol. Cell Biol. 8, 519–529 (2007). Comprehensive review of the molecular signalling induced by protein misfolding in the ER.

    CAS  Google Scholar 

  70. Zhang, K. & Kaufman, R. J. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66, S102–S109 (2006).

    CAS  PubMed  Google Scholar 

  71. Zhao, L. & Ackerman, S. L. Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol. 18, 444–452 (2006).

    CAS  PubMed  Google Scholar 

  72. Marciniak, S. J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    CAS  PubMed  Google Scholar 

  73. Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008). Review of how ER stress and the UPR play an important part in the pathogenesis of many human diseases.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Vranka, J. et al. Selective intracellular retention of extracellular matrix proteins and chaperones associated with pseudoachondroplasia. Matrix Biol. 20, 439–450 (2001).

    CAS  PubMed  Google Scholar 

  75. Hecht, J. T. et al. Calreticulin, PDI, Grp94 and BiP chaperone proteins are associated with retained COMP in pseudoachondroplasia chondrocytes. Matrix Biol. 20, 251–262 (2001).

    CAS  PubMed  Google Scholar 

  76. Dinser, R. et al. Pseudoachondroplasia is caused through both intra- and extracellular pathogenic pathways. J. Clin. Invest. 110, 505–513 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hashimoto, Y., Tomiyama, T., Yamano, Y. & Mori, H. Mutation (D472Y) in the type 3 repeat domain of cartilage oligomeric matrix protein affects its early vesicle trafficking in endoplasmic reticulum and induces apoptosis. Am. J. Pathol. 163, 101–110 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pirog-Garcia, K. A. et al. Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP. Hum. Mol. Genet. 16, 2072–2088 (2007). Provides direct evidence for triggering of the UPR in a mouse knockin model of a human COMP mutation.

    CAS  PubMed  Google Scholar 

  79. Hecht, J. T. et al. Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate. J. Orthop. Res. 22, 759–767 (2004).

    CAS  PubMed  Google Scholar 

  80. Schmitz, M. et al. Transgenic mice expressing D469Δ mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and sternal malformations. Matrix Biol. 27, 67–85 (2008).

    CAS  PubMed  Google Scholar 

  81. Weirich, C. et al. Expression of PSACH-associated mutant COMP in tendon fibroblasts leads to increased apoptotic cell death irrespective of the secretory characteristics of mutant COMP. Matrix Biol. 26, 314–323 (2007).

    CAS  PubMed  Google Scholar 

  82. Leighton, M. P. et al. Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation. Hum. Mol. Genet. 16, 1728–1741 (2007).

    CAS  PubMed  Google Scholar 

  83. Lisse, T. S. et al. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet. 4, e7 (2008). Describes the UPR and the downstream consequences of apoptosis in an in vivo N -ethyl- N -nitrosourea (ENU) mutant mouse with a collagen I OI mutation.

    PubMed  PubMed Central  Google Scholar 

  84. Chessler, S. D. & Byers, P. H. Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type I procollagen with a deletion in the pro alpha 2(I) chain that preserves the Gly-X-Y repeat pattern. J. Biol. Chem. 267, 7751–7757 (1992).

    CAS  PubMed  Google Scholar 

  85. Forlino, A. et al. Differential expression of both extracellular and intracellular proteins is involved in the lethal or nonlethal phenotypic variation of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics 7, 1877–1891 (2007).

    CAS  PubMed  Google Scholar 

  86. Hintze, V. et al. Cells expressing partially unfolded R789C/p.R989C type II procollagen mutant associated with spondyloepiphyseal dysplasia undergo apoptosis. Hum. Mutat. 29, 841–851 (2008).

    CAS  PubMed  Google Scholar 

  87. Kwan, K. M. et al. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J. Cell Biol. 136, 459–471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Millington-Ward, S., McMahon, H. P. & Farrar, G. J. Emerging therapeutic approaches for osteogenesis imperfecta. Trends Mol. Med. 11, 299–305 (2005).

    CAS  PubMed  Google Scholar 

  89. Dazzi, F. & Horwood, N. J. Potential of mesenchymal stem cell therapy. Curr. Opin. Oncol. 19, 650–655 (2007).

    PubMed  Google Scholar 

  90. Rochet, J. C. Novel therapeutic strategies for the treatment of protein-misfolding diseases. Expert Rev. Mol. Med. 9, 1–34 (2007).

    PubMed  Google Scholar 

  91. Cohen, F. E. & Kelly, J. W. Therapeutic approaches to protein-misfolding diseases. Nature 426, 905–909 (2003).

    CAS  PubMed  Google Scholar 

  92. Ulloa-Aguirre, A., Janovick, J. A., Brothers, S. P. & Conn, P. M. Pharmacologic rescue of conformationally-defective proteins: implications for the treatment of human disease. Traffic 5, 821–837 (2004).

    CAS  PubMed  Google Scholar 

  93. Perlmutter, D. H. Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. Pediatr. Res. 52, 832–836 (2002).

    PubMed  Google Scholar 

  94. Arakawa, T., Ejima, D., Kita, Y. & Tsumoto, K. Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmaceutical drugs. Biochim. Biophys. Acta 1764, 1677–1687 (2006).

    CAS  PubMed  Google Scholar 

  95. Reddy, R. K. et al. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. 278, 20915–20924 (2003).

    CAS  PubMed  Google Scholar 

  96. Kudo, T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364–375 (2008).

    CAS  PubMed  Google Scholar 

  97. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chem. Biol. 4, 295–305 (2008). Describes a novel mTOR-independent pathway that regulates autophagy, and drugs that can act upon this pathway to stimulate autophagy as a putative therapeutic strategy in some protein misfolding diseases.

    CAS  Google Scholar 

  98. Sarkar, S. et al. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chem. Biol. 3, 331–338 (2007).

    CAS  Google Scholar 

  99. Rubinsztein, D. C., Gestwicki, J. E., Murphy, L. O. & Klionsky, D. J. Potential therapeutic applications of autophagy. Nature Rev. Drug Discov. 6, 304–312 (2007).

    CAS  Google Scholar 

  100. Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science 307, 935–939 (2005).

    CAS  PubMed  Google Scholar 

  101. Robinson, P. N. et al. The molecular genetics of Marfan syndrome and related disorders. J. Med. Genet. 43, 769–787 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Irwin, W. A. et al. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nature Genet. 35, 367–371 (2003).

    CAS  PubMed  Google Scholar 

  105. Merlini, L. et al. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc. Natl Acad. Sci. USA 105, 5225–5229 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hicks, D. et al. Cyclosporine A treatment for Ullrich congenital muscular dustrophy: a cellular study of mitochondrial dysfunction and its rescue. Brain 16 Nov 2008 (doi:10.1093/brain/awn289).

    CAS  PubMed  Google Scholar 

  107. Hansen, U. & Bruckner, P. Macromolecular specificity of collagen fibrillogenesis: fibrils of collagens I and XI contain a heterotypic alloyed core and a collagen I sheath. J. Biol. Chem. 278, 37352–37359 (2003).

    CAS  PubMed  Google Scholar 

  108. van Anken, E. & Braakman, I. Versatility of the endoplasmic reticulum protein folding factory. Crit. Rev. Biochem. Mol. Biol. 40, 191–228 (2005).

    CAS  PubMed  Google Scholar 

  109. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005).

    CAS  PubMed  Google Scholar 

  110. Yorimitsu, T. & Klionsky, D. J. Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 3, 160–162 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Health and Medical Research Council of Australia. J.F.B. and S.R.L. are National Health and Medical Research Council Research Fellows. We thank C. Little, P. Farlie, A. Fosang and R. Wilson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Bateman.

Supplementary information

Related links

Related links

FURTHER INFORMATION

Bateman laboratory homepage

Online Medelian Inheritance in Man (OMIM)

The Human Gene Mutation Database at the Institute of Medical Genetics in Cardiff

Database of osteogenesis imperfecta and type III collagen mutations

Leiden Muscular Dystrophy pages

Glossary

Osteogenesis imperfecta

(OI). A genetic bone disorder caused by abnormalities of collagen I structure or synthesis that results in poorly formed and fragile bones. Multiple distinct clinical manifestations range in severity from mild to congenital lethal.

Chondrodysplasia

A disturbance in the development of cartilage, primarily affecting the long bones. More than 200 forms are recognized, presenting a clinical range from mild to severe arrested growth and dwarfism, to congenital lethal.

Ehlers–Danlos syndrome

A group of inherited disorders of collagen synthesis and fibril formation that result in a range of pathologies, including joint laxity and hypermobility, and skin and blood vessel fragility.

Marfan syndrome

An inherited disorder presenting with long bone overgrowth, and defects of the heart valves and aorta. It is caused by mutations in the microfibrillar protein fibrillin 1.

Articular cartilage

The permanent cartilage that forms the smooth articulating surface of joints. It is a dense connective tissue with an extracellular matrix rich in collagen II and the proteoglycan aggrecan.

Growth plate cartilage

A transient cartilage type that drives bone growth and is located at one or both ends of long bones between the epiphysis and the diaphysis. The chondrocytes of the growth plate undergo specific maturation steps leading to hypertrophy and replacement with bone during endochondral bone formation before puberty.

Haploinsufficiency

A condition in a diploid organism in which a single functional copy of a gene results in a phenotype, such as a disease.

Stickler syndrome

A mild inherited chondrodysplasia with early degenerative joint and vertebral changes and often retinal detachment and blindness.

Bethlem myopathy

A genetic disease associated with muscle weakness. This congenital form of muscular dystrophy caused by collagen VI mutations is less severe than the allelic disorder, Ullrich congenital muscular dystrophy.

Metaphyseal chondrodysplasia, Schmid type

A form of chondrodysplasia that is caused by mutations in collagen X, a component of growth plate cartilage. Growth plates are structurally altered and the chondrocytes are disorganized, causing mild clinical abnormities of bone growth, such as bowed legs and hip problems.

Dystrophic epidermolysis bullosa

A severe genetic disorder resulting in extremely fragile skin and recurrent blister formation caused by mutations in collagen VII.

Dominant negative

A form of mutation that interferes with the function of its wild-type allele product.

Bruck syndrome

A recessive form of osteogenesis imperfecta, with joint contractures caused by mutations in the collagen-modifying enzyme lysyl hydroxylase 2.

ER-associated degradation

(ERAD). An intracellular quality control pathway that directs retrotranslocation of normal and misfolded proteins from the endoplasmic reticulum to the cytoplasm for proteasomal degradation.

Autophagy

In autophagy the cell is degraded largely from within, with little or no help from phagocytes. Bulk cytoplasm and organelles are sequestered within double-membrane-bound vesicles. These ultimately fuse with the lysosome and their contents are degraded.

Proteasome

A large cytoplasmic protein complex that degrades proteins to which ubiquitin has been added by a process that requires ATP.

Chondrocyte

Cartilage cells that produce the structural components of cartilage.

Osteoblast

A mesenchymal cell with the capacity to differentiate into bone tissue.

Mesenchymal stem cells

Multipotent mesenchymally derived stem cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes and adipocytes.

Allogeneic

In allogeneic transplants, cells, organs or tissues from any human other than self or a monozygotic twin are used for therapeutic purposes.

mTOR

The mammalian target of rapamycin is a serine/threonine protein kinase that regulates cell growth, proliferation, survival, protein synthesis and transcription.

Transforming growth factor-β

(TGFβ). A secreted protein that controls cellular proliferation, differentiation and other functions in most cells. It has a role in immunity, cancer, heart disease and Marfan syndrome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bateman, J., Boot-Handford, R. & Lamandé, S. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 10, 173–183 (2009). https://doi.org/10.1038/nrg2520

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing