Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Familial pituitary tumor syndromes

Abstract

The vast majority of pituitary tumors are benign and occur sporadically; however, they can still result in significant morbidity and even premature mortality through mass effects and hormone dysfunction. The etiology of sporadic tumors is still poorly understood; by contrast, advances have been made in our understanding of familial pituitary adenoma syndromes in the past decade. Currently, four genes are known to be associated with familial pituitary tumor syndromes: MEN1, CDKN1B, PRKAR1A and AIP. The first three genes are associated with a variety of extrapituitary pathologies, for example, primary hyperparathyroidism with multiple endocrine neoplasia type 1, which might aid identification of these syndromes. By contrast, AIP mutations seem to occur in the setting of isolated familial pituitary adenomas, particularly of the growth-hormone-secreting subtype. Awareness and identification of familial pituitary tumor syndromes is important because of potential associated pathologies and important implications for family members. Here, we review the current knowledge of familial pituitary tumor syndromes.

Key Points

  • Less than 5% of pituitary tumors are familial; the rest are sporadic

  • Identification of inherited pituitary syndromes is important because of the associated pathologies; pituitary tumors might be the presenting feature in these syndromes and important implications exist for family members

  • Four genes have so far been identified as associated with familial pituitary tumor syndromes: MEN1, CDKN1B, PRKAR1A and AIP

  • Up to 20% of patients with clinical features of multiple endocrine neoplasia type 1 do not have a mutation in MEN1; these patients might have mutations in CDKN1B or other genes not yet identified

  • AIP has been identified as a mutated gene in patients with familial isolated pituitary adenomas, particularly those who have adenomas that secrete growth hormone

  • Features that suggest an inherited pituitary tumor syndrome include parathyroid tumors, pancreatic endocrine tumors, atrial myxomas, lentigines, Schwann-cell tumors (Carney complex), family history and young age at onset

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daly, A. F. et al. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab. 91, 4769–4775 (2006).

    CAS  PubMed  Google Scholar 

  2. Ezzat, S. et al. The prevalence of pituitary adenomas: a systematic review. Cancer 101, 613–619 (2004).

    PubMed  Google Scholar 

  3. Scheithauer, B. W. et al. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin. Diagn. Pathol. 4, 205–211 (1987).

    CAS  PubMed  Google Scholar 

  4. Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404–407 (1997).

    CAS  PubMed  Google Scholar 

  5. Larsson, C. et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332, 85–87 (1988).

    CAS  PubMed  Google Scholar 

  6. Brandi, M. L. et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 86, 5658–5671 (2001).

    CAS  PubMed  Google Scholar 

  7. Lemos, M. C. & Thakker, R. V. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 29, 22–32 (2008).

    CAS  PubMed  Google Scholar 

  8. Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    PubMed  PubMed Central  Google Scholar 

  9. Thakker, R. V. et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N. Engl. J. Med. 321, 218–224 (1989).

    CAS  PubMed  Google Scholar 

  10. Friedman, E. et al. Clonality of parathyroid tumors in familial multiple endocrine neoplasia type 1. N. Engl. J. Med. 321, 213–218 (1989).

    CAS  PubMed  Google Scholar 

  11. Bystrom, C. et al. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors. Proc. Natl Acad. Sci. USA 87, 1968–1972 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pannett, A. A. & Thakker, R. V. Somatic mutations in MEN type 1 tumors, consistent with the Knudson “two-hit” hypothesis. J. Clin. Endocrinol. Metab. 86, 4371–4374 (2001).

    CAS  PubMed  Google Scholar 

  13. Benson, L., Ljunghall, S., Akerström, G. & Oberg, K. Hyperparathyroidism presenting as the first lesion in multiple endocrine neoplasia type 1. Am. J. Med. 82, 731–737 (1987).

    CAS  PubMed  Google Scholar 

  14. Trump, D. et al. Clinical studies of multiple endocrine neoplasia type 1 (MEN1). QJM 89, 653–669 (1996).

    CAS  PubMed  Google Scholar 

  15. Vierimaa, O. et al. Multiple endocrine neoplasia type 1 in Northern Finland; clinical features and genotype phenotype correlation. Eur. J. Endocrinol. 157, 285–294 (2007).

    CAS  PubMed  Google Scholar 

  16. Skogseid, B. et al. Multiple endocrine neoplasia type 1: a 10-year prospective screening study in four kindreds. J. Clin. Endocrinol. Metab. 73, 281–287 (1991).

    CAS  PubMed  Google Scholar 

  17. Hao, W. et al. Multiple endocrine neoplasia type 1 variant with frequent prolactinoma and rare gastrinoma. J. Clin. Endocrinol. Metab. 89, 3776–3784 (2004).

    PubMed  Google Scholar 

  18. Carty, S. E. et al. The variable penetrance and spectrum of manifestations of multiple endocrine neoplasia type 1. Surgery 124, 1106–1113 (1998).

    CAS  PubMed  Google Scholar 

  19. Verges, B. et al. Pituitary disease in MEN type 1 (MEN1): data from the France–Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab. 87, 457–465 (2002).

    CAS  PubMed  Google Scholar 

  20. Machens, A. et al. Age-related penetrance of endocrine tumours in multiple endocrine neoplasia type 1 (MEN1): a multicentre study of 258 gene carriers. Clin. Endocrinol. (Oxf.) 67, 613–622 (2007).

    Google Scholar 

  21. Skogseid, B. et al. Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 75, 76–81 (1992).

    CAS  PubMed  Google Scholar 

  22. Schussheim, D. H. et al. Multiple endocrine neoplasia type 1: new clinical and basic findings. Trends Endocrinol. Metab. 12, 173–178 (2001).

    CAS  PubMed  Google Scholar 

  23. Darling, T. N. et al. Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1. Arch. Dermatol. 133, 853–857 (1997).

    CAS  PubMed  Google Scholar 

  24. Stratakis, C. A. et al. Pituitary macroadenoma in a 5-year-old: an early expression of multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab. 85, 4776–4780 (2000).

    CAS  PubMed  Google Scholar 

  25. O'Brien, T. et al. Results of treatment of pituitary disease in multiple endocrine neoplasia, type I. Neurosurgery 39, 273–278 (1996).

    CAS  PubMed  Google Scholar 

  26. Trouillas, J. et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case–control study in a series of 77 patients versus 2509 non-MEN1 patients. Am. J. Surg. Pathol. 32, 534–543 (2008).

    PubMed  Google Scholar 

  27. Corbetta, S. et al. Multiple endocrine neoplasia type 1 in patients with recognized pituitary tumours of different types. Clin. Endocrinol. (Oxf.) 47, 507–512 (1997).

    CAS  Google Scholar 

  28. Scheithauer, B. W. et al. Multiple endocrine neoplasia type 1-associated thyrotropin-producing pituitary carcinoma: report of a probable de novo example. Hum. Pathol. 40, 270–280 (2009).

    CAS  PubMed  Google Scholar 

  29. Gordon, M. V. et al. Metastatic prolactinoma presenting as a cervical spinal cord tumour in multiple endocrine neoplasia type one (MEN-1). Clin. Endocrinol. (Oxf.) 66, 150–152 (2007).

    Google Scholar 

  30. Liu, S. W., van de Velde, C. J., Heslinga, J. M., Kievit, J. & Roelfsema, F. Acromegaly caused by growth hormone-releasing hormone in a patient with multiple endocrine neoplasia type I. Jpn J. Clin. Oncol. 26, 49–52 (1996).

    CAS  PubMed  Google Scholar 

  31. Ramsay, J. A., Kovacs, K., Asa, S. L., Pike, M. J. & Thorner, M. O. Reversible sellar enlargement due to growth hormone-releasing hormone production by pancreatic endocrine tumors in a acromegalic patient with multiple endocrine neoplasia type I syndrome. Cancer 62, 445–450 (1988).

    CAS  PubMed  Google Scholar 

  32. Wautot, V. et al. Germline mutation profile of MEN1 in multiple endocrine neoplasia type 1: search for correlation between phenotype and the functional domains of the MEN1 protein. Hum. Mutat. 20, 35–47 (2002).

    CAS  PubMed  Google Scholar 

  33. Burgess, J. R., Shepherd, J. J., Parameswaran, V., Hoffman, L. & Greenaway, T. M. Spectrum of pituitary disease in multiple endocrine neoplasia type 1 (MEN 1): clinical, biochemical, and radiological features of pituitary disease in a large MEN 1 kindred. J. Clin. Endocrinol. Metab. 81, 2642–2646 (1996).

    CAS  PubMed  Google Scholar 

  34. Olufemi, S. E. et al. Common ancestral mutation in the MEN1 gene is likely responsible for the prolactinoma variant of MEN1 (MEN1Burin) in four kindreds from Newfoundland. Hum. Mutat. 11, 264–269 (1998).

    CAS  PubMed  Google Scholar 

  35. Petty, E. M. et al. Mapping the gene for hereditary hyperparathyroidism and prolactinoma (MEN1Burin) to chromosome 11q: evidence for a founder effect in patients from Newfoundland. Am. J. Hum. Genet. 54, 1060–1066 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Burgess, J. R. et al. Phenotype and phenocopy: the relationship between genotype and clinical phenotype in a single large family with multiple endocrine neoplasia type 1 (MEN 1). Clin. Endocrinol. (Oxf.) 53, 205–211 (2000).

    CAS  Google Scholar 

  37. Crabtree, J. S. et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl Acad. Sci. USA 98, 1118–1123 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Biondi, C. A. et al. Conditional inactivation of the MEN1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol. Cell Biol. 24, 3125–3131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertolino, P., Tong, W. M., Galendo, D., Wang, Z. Q. & Zhang, C. X. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol. Endocrinol. 17, 1880–1892 (2003).

    CAS  PubMed  Google Scholar 

  40. Pannett, A. A. et al. Multiple endocrine neoplasia type 1 (MEN1) germline mutations in familial isolated primary hyperparathyroidism. Clin. Endocrinol. (Oxf.) 58, 639–646 (2003).

    CAS  Google Scholar 

  41. Guru, S. C. et al. Menin, the product of the MEN1 gene, is a nuclear protein. Proc. Natl Acad. Sci. USA 95, 1630–1634 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. La, P. et al. Tumor suppressor menin: the essential role of nuclear localization signal domains in coordinating gene expression. Oncogene 25, 3537–3546 (2006).

    CAS  PubMed  Google Scholar 

  43. Yang, Y. & Hua, X. In search of tumor suppressing functions of menin. Mol. Cell Endocrinol. 265–266, 34–41 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Dreijerink, K. M., Höppener, J. W., Timmers, H. M. & Lips, C. J. Mechanisms of disease: multiple endocrine neoplasia type 1—relation to chromatin modifications and transcription regulation. Nat. Clin. Pract. Endocrinol. Metab. 2, 562–570 (2006).

    CAS  PubMed  Google Scholar 

  45. Scacheri, P. C. et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2, e51 (2006).

    PubMed  PubMed Central  Google Scholar 

  46. Karnik, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Milne, T. A. et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA 102, 749–754 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hughes, C. M. et al. Menin associates with a trithorax family histone methyltransferase complex and with the Hoxc8 locus. Mol. Cell 13, 587–597 (2004).

    CAS  PubMed  Google Scholar 

  49. Franklin, D. S., Godfrey, V. L., O'Brien, D. A., Deng, C. & Xiong, Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol. Cell Biol. 20, 6147–6158 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stalberg, P. et al. Transfection of the multiple endocrine neoplasia type 1 gene to a human endocrine pancreatic tumor cell line inhibits cell growth and affects expression of JunD, delta-like protein 1/preadipocyte factor-1, proliferating cell nuclear antigen, and QM/Jif-1. J. Clin. Endocrinol. Metab. 89, 2326–2337 (2004).

    CAS  PubMed  Google Scholar 

  51. Kim, Y. S. et al. Stable overexpression of MEN1 suppresses tumorigenicity of Ras. Oncogene 18, 5936–5942 (1999).

    CAS  PubMed  Google Scholar 

  52. Lin, S. Y. & Elledge, S. J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113, 881–889 (2003).

    CAS  PubMed  Google Scholar 

  53. Ellard, S., Hattersley, A. T., Brewer, C. M. & Vaidya, B. Detection of an MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. Clin. Endocrinol. (Oxf.) 62, 169–175 (2005).

    CAS  Google Scholar 

  54. Tham, E. et al. Clinical testing for mutations in the MEN1 gene in Sweden: a report on 200 unrelated cases. J. Clin. Endocrinol. Metab. 92, 3389–3395 (2007).

    CAS  PubMed  Google Scholar 

  55. Ozawa, A. et al. The parathyroid/pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. J. Clin. Endocrinol. Metab. 92, 1948–1951 (2007).

    CAS  PubMed  Google Scholar 

  56. Hai, N., Aoki, N., Matsuda, A., Mori, T. & Kosugi, S. Germline MEN1 mutations in sixteen Japanese families with multiple endocrine neoplasia type 1 (MEN1). Eur. J. Endocrinol. 141, 475–480 (1999).

    CAS  PubMed  Google Scholar 

  57. Hai, N. & Kosugi, S. Gene diagnosis and clinical management of multiple endocrine neoplasia type 1 (MEN1). Biomed. Pharmacother. 54 (Suppl. 1), s47–s51 (2000).

    Google Scholar 

  58. Tortosa, F. et al. Prevalence of MEN 1 in patients with prolactinoma. MEN1 Study Group of the Hospital de la Santa Creu i Sant Pau of Barcelona. Clin. Endocrinol. (Oxf.) 50, 272 (1999).

    CAS  Google Scholar 

  59. Klein, R. D., Salih, S., Bessoni, J. & Bale, A. E. Clinical testing for multiple endocrine neoplasia type 1 in a DNA diagnostic laboratory. Genet. Med. 7, 131–138 (2005).

    CAS  PubMed  Google Scholar 

  60. Georgitsi, M. et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab. 92, 3321–3325 (2007).

    CAS  PubMed  Google Scholar 

  61. Pellegata, N. S. et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA 103, 15558–15563 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dahia, P. L. et al. Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16, 69–76 (1998).

    CAS  PubMed  Google Scholar 

  63. Lidhar, K. et al. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J. Clin. Endocrinol. Metab. 84, 3823–3830 (1999).

    CAS  PubMed  Google Scholar 

  64. Jin, L. et al. Transforming growth factor-β, transforming growth factor- β receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am. J. Pathol. 151, 509–519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kolluri, S. K., Weiss, C., Koff, A. & Göttlicher, M. p27Kip1 induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 13, 1742–1753 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85, 721–732 (1996).

    CAS  PubMed  Google Scholar 

  67. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85, 733–744 (1996).

    CAS  PubMed  Google Scholar 

  68. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    CAS  PubMed  Google Scholar 

  69. Besson, A. et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev. 21, 1731–1746 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carney, J. A., Gordon, H., Carpenter, P. C., Shenoy, B. V. & Go, V. L. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 64, 270–283 (1985).

    CAS  Google Scholar 

  71. Schweizer-Cagianut, M., Salomon, F. & Hedinger, C. E. Primary adrenocortical nodular dysplasia with Cushing's syndrome and cardiac myxomas. A peculiar familial disease. Virchows Arch. A Pathol. Anat. Histol. 397, 183–192 (1982).

    CAS  PubMed  Google Scholar 

  72. Boikos, S. A. & Stratakis, C. A. Carney complex: the first 20 years. Curr. Opin. Oncol. 19, 24–29 (2007).

    CAS  PubMed  Google Scholar 

  73. Carney, J. A. & Toorkey, B. C. Ductal adenoma of the breast with tubular features. A probable component of the complex of myxomas, spotty pigmentation, endocrine overactivity, and schwannomas. Am. J. Surg. Pathol. 15, 722–731 (1991).

    CAS  PubMed  Google Scholar 

  74. Basson, C. T., MacRae, C. A., Korf, B. & Merliss, A. Genetic heterogeneity of familial atrial myxoma syndromes (Carney complex). Am. J. Cardiol. 79, 994–995 (1997).

    CAS  PubMed  Google Scholar 

  75. Boikos, S. A. & Stratakis, C. A. Carney complex: pathology and molecular genetics. Neuroendocrinology 83, 189–199 (2006).

    CAS  PubMed  Google Scholar 

  76. Stratakis, C. A. et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J. Clin. Invest. 97, 699–705 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet. 26, 89–92 (2000).

    CAS  PubMed  Google Scholar 

  78. Horvath, A. & Stratakis, C. A. Clinical and molecular genetics of acromegaly: MEN1, Carney complex, McCune–Albright syndrome, familial acromegaly and genetic defects in sporadic tumors. Rev. Endocr. Metab. Disord. 9, 1–11 (2008).

    CAS  PubMed  Google Scholar 

  79. Watson, J. C. et al. Neurosurgical implications of Carney complex. J. Neurosurg. 92, 413–418 (2000).

    CAS  PubMed  Google Scholar 

  80. Pack, S. D. et al. Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J. Clin. Endocrinol. Metab. 85, 3860–3865 (2000).

    CAS  PubMed  Google Scholar 

  81. Boikos, S. A. & Stratakis, C. A. Pituitary pathology in patients with Carney complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary 9, 203–209 (2006).

    CAS  PubMed  Google Scholar 

  82. Robinson-White, A. et al. PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J. Clin. Endocrinol. Metab. 91, 2380–2388 (2006).

    CAS  PubMed  Google Scholar 

  83. Kirschner, L. S. et al. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res. 65, 4506–4514 (2005).

    CAS  PubMed  Google Scholar 

  84. Griffin, K. J. et al. A mouse model for Carney complex. Endocr. Res. 30, 903–911 (2004).

    CAS  PubMed  Google Scholar 

  85. Yin, Z., Williams-Simons, L., Parlow, A. F., Asa, S. & Kirschner, L. S. Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol. Endocrinol. 22, 380–387 (2008).

    CAS  PubMed  Google Scholar 

  86. Beckers, A. & Daly, A. F. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur. J. Endocrinol. 157, 371–382 (2007).

    CAS  PubMed  Google Scholar 

  87. Vierimaa, O. et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 312, 1228–1230 (2006).

    CAS  PubMed  Google Scholar 

  88. Leontiou, C. A. et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 93, 2390–2401 (2008).

    CAS  PubMed  Google Scholar 

  89. Naves, L. A. et al. Variable pathological and clinical features of a large Brazilian family harboring a mutation in the aryl hydrocarbon receptor-interacting protein gene. Eur. J. Endocrinol. 157, 383–391 (2007).

    CAS  PubMed  Google Scholar 

  90. Iwata, T. et al. The aryl hydrocarbon receptor-interacting protein gene is rarely mutated in sporadic GH-secreting adenomas. Clin. Endocrinol. (Oxf.) 66, 499–502 (2007).

    CAS  Google Scholar 

  91. Toledo, R. A. et al. Germline mutation in the aryl hydrocarbon receptor interacting protein gene in familial somatotropinoma. J. Clin. Endocrinol. Metab. 92, 1934–1937 (2007).

    CAS  PubMed  Google Scholar 

  92. Daly, A. F. et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J. Clin. Endocrinol. Metab. 92, 1891–1896 (2007).

    CAS  PubMed  Google Scholar 

  93. Georgitsi, M. et al. Large genomic deletions in AIP in pituitary adenoma predisposition. J. Clin. Endocrinol. Metab. 93, 4146–4151 (2008).

    CAS  PubMed  Google Scholar 

  94. Georgitsi, M. et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc. Natl Acad. Sci. USA 104, 4101–4105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Buchbinder, S. et al. Aryl hydrocarbon receptor interacting protein gene (AIP) mutations are rare in patients with hormone secreting or non-secreting pituitary adenomas. Exp. Clin. Endocrinol. Diabetes 116, 625–628 (2008).

    CAS  PubMed  Google Scholar 

  96. Barlier, A. et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 92, 1952–1955 (2007).

    CAS  PubMed  Google Scholar 

  97. Cazabat, L. et al. Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas. Eur. J. Endocrinol. 157, 1–8 (2007).

    CAS  PubMed  Google Scholar 

  98. Raitila, A. et al. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia. Endocr. Relat. Cancer 14, 901–906 (2007).

    CAS  PubMed  Google Scholar 

  99. DiGiovanni, R., Serra, S., Ezzat, S. & Asa, S. L. AIP mutations are not identified in patients with sporadic pituitary adenomas. Endocr. Pathol. 18, 76–78 (2007).

    CAS  PubMed  Google Scholar 

  100. Yu, R., Bonert, V., Saporta, I., Raffel, L. J. & Melmed, S. Aryl hydrocarbon receptor interacting protein variants in sporadic pituitary adenomas. J. Clin. Endocrinol. Metab. 91, 5126–5129 (2006).

    CAS  PubMed  Google Scholar 

  101. Georgitsi, M. et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin. Endocrinol. (Oxf.) 69, 621–627 (2008).

    CAS  Google Scholar 

  102. Igreja, S. et al. Assessment of p27 (cyclin-dependent kinase inhibitor 1B) and AIP (aryl hydrocarbon receptor-interacting protein) genes in MEN1 syndrome patients without any detectable MEN1 gene mutations. Clin. Endocrinol. (Oxf.) 70, 259–264 (2009).

    CAS  Google Scholar 

  103. Barouki, R., Coumoul, X. & Fernandez-Salguero, P. M. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 581, 3608–3615 (2007).

    CAS  PubMed  Google Scholar 

  104. Lees, M. J., Peet, D. J. & Whitelaw, M. L. Defining the role for XAP2 in stabilization of the dioxin receptor. J. Biol. Chem. 278, 35878–35888 (2003).

    CAS  PubMed  Google Scholar 

  105. Ge, N. L. & Elferink, C. J. A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J. Biol. Chem. 273, 22708–22713 (1998).

    CAS  PubMed  Google Scholar 

  106. Bolger, G. B. et al. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J. Biol. Chem. 278, 33351–33363 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M. S. Elston is supported by an National Health and Medical Research Council medical postgraduate research scholarship and New South Wales Cancer Institute Research Scholars Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce G. Robinson.

Ethics declarations

Competing interests

R. J. Clifton-Bligh declares an association with the following companies: Eli Lilly (speakers bureau), Sanofi-Aventis (speakers bureau), Servier (speakers bureau). B. G. Robinson declares an association with the following company: AstraZeneca (grant/research support). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elston, M., McDonald, K., Clifton-Bligh, R. et al. Familial pituitary tumor syndromes. Nat Rev Endocrinol 5, 453–461 (2009). https://doi.org/10.1038/nrendo.2009.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing