Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heart rate: a forgotten link in coronary artery disease?

Abstract

A considerable body of evidence indicates that elevated resting heart rate is an independent, modifiable risk factor for cardiovascular events and mortality in patients with coronary artery disease. Elevated heart rate can produce adverse effects in several ways. Firstly, myocardial oxygen consumption is increased at high heart rates, but the time available for myocardial perfusion is reduced, increasing the likelihood of myocardial ischemia. Secondly, exposure of the large elastic arteries to cyclical stretch is increased at high heart rates. This effect can increase the rate at which components of the arterial wall deteriorate. Elastin fibers, which have an extremely slow rate of turnover in adult life, might be particularly vulnerable. Thirdly, elevated heart rate can predispose the myocardium to arrhythmias, and favor the development and progression of coronary atherosclerosis, by adversely affecting the balance between systolic and diastolic flow. Comparisons of the effects of the specific heart-rate-lowering drug ivabradine with those of β-blockers could help clarify the pathophysiological effects of elevated heart rate. Effective heart rate control among patients with coronary artery disease is uncommon in clinical practice, representing a missed therapeutic opportunity.

Key Points

  • Elevated resting heart rate is a modifiable risk factor for cardiovascular events and mortality, but rates of heart rate control are low among patients with coronary artery disease

  • At high heart rates, myocardial oxygen requirement is increased whereas the time available for perfusion, which occurs predominantly during diastole, is reduced potentially causing myocardial ischemia

  • Elevated heart rate increases the number of stretch cycles experienced by large elastic arteries, accelerating deterioration of arterial wall components (especially elastin fibers), leading to increased arterial stiffness

  • In the presence of systemic risk factors, such as dyslipidemia and hyperglycemia, atherosclerosis occurs preferentially at sites in the arterial tree exposed to low or reversing fluid shear stress

  • In the coronary arteries, elevated heart rate adversely affects the balance between atherogenic low and reversing shear stress (during systole) and atheroprotective greater, unidirectional shear stress (during diastole)

  • Clinical trials of the specific heart-rate-lowering agent, ivabradine, have shown that 'pure' heart rate reduction can improve outcomes in patients with a heart rate ≥70 bpm

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Effects of heart rate on development of atherosclerosis and vascular oxidative stress.
Figure 3: All-cause mortality according to quintiles of baseline heart rate, shown as hazard ratios relative to the lowest quintile (<63 bpm), in 24,913 patients with proven or suspected coronary artery disease.106
Figure 4

Similar content being viewed by others

References

  1. Tanaka, N. et al. Heart-rate-proportional oxygen consumption for constant cardiac work in dog heart. Jpn J. Physiol. 40, 503–521 (1990).

    CAS  PubMed  Google Scholar 

  2. Colin, P., Ghaleh, B., Monnet, X., Hittinger, L. & Berdeaux, A. Effect of graded heart rate reduction with ivabradine on myocardial oxygen consumption and diastolic time in exercising dogs. J. Pharmacol. Exp. Ther. 308, 236–240 (2004).

    CAS  PubMed  Google Scholar 

  3. Heusch, G. et al. Improvement of regional myocardial blood flow and reduction of infarct size with ivabradine: protection beyond heart rate reduction. Eur. Heart J. 29, 2265–2275 (2008).

    PubMed  Google Scholar 

  4. Bassenge, E. & Heusch, G. Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev. Physiol. Biochem. Pharmacol. 116, 77–165 (1990).

    CAS  PubMed  Google Scholar 

  5. Westerhof, N., Boer, C., Lamberts, R. R. & Sipkema, P. Cross-talk between cardiac muscle and coronary vasculature. Physiol. Rev. 86, 1263–1308 (2006).

    CAS  PubMed  Google Scholar 

  6. Heusch, G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br. J. Pharmacol. 153, 1589–1601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Spaan, J. et al. Coronary structure and perfusion in health and disease. Philos. Transact. A Math. Phys. Eng. Sci. 366, 3137–3153 (2008).

    Google Scholar 

  8. Algranati, D., Kassab, G. S. & Lanir, Y. Mechanisms of myocardium–coronary vessel interaction. Am. J. Physiol. Heart Circ. Physiol. 298, H861–H873 (2010).

    CAS  PubMed  Google Scholar 

  9. Toyota, E. et al. Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am. J. Physiol. Heart Circ. Physiol. 288, H1598–H1603 (2005).

    CAS  PubMed  Google Scholar 

  10. Giannoglou, G. D. et al. Elevated heart rate and atherosclerosis: an overview of the pathogenetic mechanisms. Int. J. Cardiol. 126, 302–312 (2008).

    PubMed  Google Scholar 

  11. Davies, J. E. et al. Evidence of a dominant backward-propagating “suction” wave responsible for diastolic filling in humans, attenuated in left ventricular hypertrophy. Circulation 113, 1768–1778 (2006).

    PubMed  Google Scholar 

  12. Fokkema, D. S. et al. Diastolic time fraction as a determinant of subendocardial perfusion. Am. J. Physiol. Heart Circ. Physiol. 288, H2450–H2456 (2005).

    CAS  PubMed  Google Scholar 

  13. Bombardini, T. et al. Diastolic time—frequency relation in the stress echo lab: filling timing and flow at different heart rates. Cardiovasc. Ultrasound 6, 15 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Indolfi, C. & Ross, J. Jr. The role of heart rate in myocardial ischemia and infarction: implication of myocardial perfusion-contraction matching. Prog. Cardiovasc. Dis. 36, 61–74 (1993).

    CAS  PubMed  Google Scholar 

  15. Heusch, G. & Schulz, R. The relation of contractile function to myocardial perfusion. Perfusion-contraction match and mismatch. Herz. 24, 509–514 (1999).

    CAS  PubMed  Google Scholar 

  16. van den Wijngaard, J. P. et al. Model prediction of subendocardial perfusion of the coronary circulation in the presence of an epicardial coronary artery stenosis. Med. Biol. Eng. Comput. 46, 421–432 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. Heusch, G. & Yoshimoto, N. Effects of heart rate and perfusion pressure on segmental coronary resistances and collateral perfusion. Pflügers Arch. 397, 284–289 (1983).

    CAS  PubMed  Google Scholar 

  18. Heusch, G., Yoshimoto, N. & Müller-Ruchholtz, E. R. Effects of heart rate on hemodynamic severity of coronary artery stenosis in the dog. Basic Res. Cardiol. 77, 562–573 (1982).

    CAS  PubMed  Google Scholar 

  19. Nabel, E. G., Selwyn, A. P. & Ganz, P. Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation 81, 850–859 (1990).

    CAS  PubMed  Google Scholar 

  20. Sambuceti, G., Marzilli, M., Fedele, S., Marini, C. & L'Abbate, A. Paradoxical increase in microvascular resistance during tachycardia downstream from a severe stenosis in patients with coronary artery disease: reversal by angioplasty. Circulation 103, 2352–2360 (2001).

    CAS  PubMed  Google Scholar 

  21. Panza, J. A., Diodati, J. G., Callahan, T. S., Epstein, S. E. & Quyyumi, A. A. Role of increases in heart rate in determining the occurrence and frequency of myocardial ischemia during daily life in patients with stable coronary artery disease. J. Am. Coll. Cardiol. 20, 1092–1098 (1992).

    CAS  PubMed  Google Scholar 

  22. Gibbons, R. J. et al. ACC/AHA 2002 guideline update for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients with Chronic Stable Angina). J. Am. Coll. Cardiol. 41, 159–168 (2003).

    PubMed  Google Scholar 

  23. Guth, B. D., Heusch, G., Seitelberger, R. & Ross, J. Jr. Mechanism of beneficial effect of beta-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ. Res. 60, 738–746 (1987).

    CAS  PubMed  Google Scholar 

  24. Simonsen, S., Ihlen, H. & Kjekshus, J. K. Hemodynamic and metabolic effects of timolol (Blocadren) on ischaemic myocardium. Acta Med. Scand. 213, 393–398 (1983).

    CAS  PubMed  Google Scholar 

  25. Vilaine, J. P., Bidouard, J. P., Lesage, L., Reure, H. & Péglion, J. L. Anti-ischemic effects of ivabradine, a selective heart rate-reducing agent, in exercise-induced myocardial ischemia in pigs. J. Cardiovasc. Pharmacol. 42, 688–696 (2003).

    CAS  PubMed  Google Scholar 

  26. Monnet, X. et al. Heart rate reduction during exercise-induced myocardial ischaemia and stunning. Eur. Heart J. 25, 579–586 (2004).

    PubMed  Google Scholar 

  27. Borer, J. S., Fox, K., Jaillon, P., Lerebours, G., Ivabradine Investigators Group. Antianginal and antiischemic effects of ivabradine, an I(f) inhibitor, in stable angina: a randomized, double-blind, multicentered, placebo-controlled trial. Circulation 107, 817–823 (2003).

    PubMed  Google Scholar 

  28. Tardif, J. C., Ponikowski, P. & Kahan, T. for the ASSOCIATE Study Investigators. Efficacy of the I(f) current inhibitor ivabradine in patients with chronic stable angina receiving beta-blocker therapy: a 4-month, randomized, placebo-controlled trial. Eur. Heart J. 30, 540–548 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Rourke, M. F. & Hashimoto, J. Mechanical factors in arterial aging: a clinical perspective. J. Am. Coll. Cardiol. 50, 1–13 (2007).

    PubMed  Google Scholar 

  30. Greenwald, S. E. Ageing of the conduit arteries. J. Pathol. 211, 157–172 (2007).

    CAS  PubMed  Google Scholar 

  31. Lin, F. Y. et al. Assessment of the thoracic aorta by multidetector computed tomography: age- and sex-specific reference values in adults without evident cardiovascular disease. J. Cardiovasc. Comput. Tomogr. 2, 298–308 (2008).

    PubMed  Google Scholar 

  32. Morrison, T. M., Choi, G., Zarins, C. K. & Taylor, C. A. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J. Vasc. Surg. 49, 1029–1036 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Ruitenbeek, A. G., van der Cammen, T. J., van den Meiracker, A. H. & Mattace-Raso, F. U. Age and blood pressure levels modify the functional properties of central but not peripheral arteries. Angiology 59, 290–295 (2008).

    PubMed  Google Scholar 

  34. Hodis, S. & Zamir, M. Mechanical events within the arterial wall: the dynamic context for elastin fatigue. J. Biomech. 42, 1010–1016 (2009).

    CAS  PubMed  Google Scholar 

  35. O'Rourke, M. F. & Nichols, W. W. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45, 652–658 (2005).

    CAS  PubMed  Google Scholar 

  36. Fonck, E. et al. Effect of aging on elastin functionality in human cerebral arteries. Stroke 40, 2552–2556 (2009).

    CAS  PubMed  Google Scholar 

  37. Davis, E. C. Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry 100, 17–26 (1993).

    CAS  PubMed  Google Scholar 

  38. Dobberstein, R. C., Tung, S. M. & Ritz-Timme, S. Aspartic acid racemisation in purified elastin from arteries as a basis for age estimation. Int. J. Legal Med. 124, 269–275 (2010).

    CAS  PubMed  Google Scholar 

  39. Humphrey, J. D. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52, 195–200 (2008).

    CAS  PubMed  Google Scholar 

  40. Atkinson, J. Age-related medial elastocalcinosis in arteries: mechanisms, animal models, and physiological consequences. J. Appl. Physiol. 105, 1643–1651 (2008).

    CAS  PubMed  Google Scholar 

  41. Simionescu, A., Simionescu, D. T. & Vyavahare, N. R. Osteogenic responses in fibroblasts activated by elastin degradation products and transforming growth factor-beta1: role of myofibroblasts in vascular calcification. Am. J. Pathol. 171, 116–123 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouvet, C., Moreau, S., Blanchette, J., de Blois, D. & Moreau, P. Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis. Arterioscler. Thromb. Vasc. Biol. 28, 856–862 (2008).

    CAS  PubMed  Google Scholar 

  43. Van Prehn, J. et al. Toward endografting of the ascending aorta: insight into dynamics using dynamic cine-CTA. J. Endovasc. Ther. 14, 551–560 (2007).

    PubMed  Google Scholar 

  44. Nichols, W. W. et al. Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J. Clin. Hypertens. (Greenwich) 10, 295–303 (2008).

    Google Scholar 

  45. Mitchell, G. F. et al. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation 121, 505–511 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Vlachopoulos, C., Aznaouridis, K. & Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55, 1318–1327 (2010).

    PubMed  Google Scholar 

  47. Mangoni, A. A., Mircoli, L., Giannattasio, C., Ferrari, A. U. & Mancia, G. Heart rate-dependence of arterial distensibility in vivo. J. Hypertens. 14, 897–901 (1996).

    CAS  PubMed  Google Scholar 

  48. Giannattasio, C. et al. Effects of heart rate changes on arterial distensibility in humans. Hypertension 42, 253–256 (2003).

    CAS  PubMed  Google Scholar 

  49. Mircoli, L., Mangoni, A. A., Giannattasio, C., Mancia, G. & Ferrari, A. U. Heart rate-dependent stiffening of large arteries in intact and sympathectomized rats. Hypertension 34, 598–602 (1999).

    CAS  PubMed  Google Scholar 

  50. Tomiyama, H. et al. Synergistic relationship between changes in the pulse wave velocity and changes in the heart rate in middle-aged Japanese adults: a prospective study. J. Hypertens. 28, 687–694 (2010).

    CAS  PubMed  Google Scholar 

  51. Albaladejo, P. et al. Effect of chronic heart rate reduction with ivabradine on carotid and aortic stucture and function in normotensive and hypertensive rats. J. Vasc. Res. 40, 320–328 (2003).

    CAS  PubMed  Google Scholar 

  52. Caro, C. G. Discovery of the role of wall shear in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 158–161 (2009).

    CAS  PubMed  Google Scholar 

  53. Chatzizisis, Y. S. et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49, 2379–2393 (2007).

    CAS  PubMed  Google Scholar 

  54. Chien, S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36, 554–562 (2008).

    PubMed  PubMed Central  Google Scholar 

  55. Davies, P. F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16–26 (2009).

    CAS  PubMed  Google Scholar 

  56. Conway, D. E., Williams, M. R., Eskin, S. G. & McIntire, L. V. Endothelial cell responses to atheroprone flow are driven by two separate flow components: low time-average shear stress and fluid flow reversal. Am. J. Physiol. Heart Circ. Physiol. 298, H367–H374 (2010).

    CAS  PubMed  Google Scholar 

  57. Papafaklis, M. I., Koskinas, K. C., Chatzizisis, Y. S., Stone, P. H. & Feldman, C. L. In-vivo assessment of the natural history of coronary atherosclerosis: vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression. Curr. Opin. Cardiol. 25, 627–638 (2010).

    PubMed  Google Scholar 

  58. Cheng, C. et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744–2753 (2006).

    PubMed  Google Scholar 

  59. Stone, P. H. et al. Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur. Heart J. 28, 705–710 (2007).

    PubMed  Google Scholar 

  60. Chatzizisis, Y. S. et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117, 993–1002 (2008).

    PubMed  Google Scholar 

  61. Koskinas, K. C. et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation 121, 2092–2101 (2010).

    PubMed  PubMed Central  Google Scholar 

  62. Bender, S. B., van Houwelingen, M. J., Merkus, D., Duncker, D. J. & Laughlin, M. H. Quantitative analysis of exercise-induced enhancement of early- and late-systolic retrograde coronary blood flow. J. Appl. Physiol. 108, 507–514 (2010).

    PubMed  Google Scholar 

  63. Boutsianis, E. et al. Computational simulation of intracoronary flow based on real coronary geometry. Eur. J. Cardiothorac. Surg. 26, 248–256 (2004).

    PubMed  Google Scholar 

  64. Soulis, J. V. et al. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis. Coron. Artery Dis. 17, 351–358 (2006).

    PubMed  Google Scholar 

  65. Chaniotis, A. K. et al. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments. Phys. Med. 26, 140–156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Heidland, U. E. & Strauer, B. E. Left ventricular muscle mass and elevated heart rate are associated with coronary plaque disruption. Circulation 104, 1477–1482 (2001).

    CAS  PubMed  Google Scholar 

  67. Kaplan, J. R., Manuck, S. B. & Clarkson, T. B. The influence of heart rate on coronary artery atherosclerosis. J. Cardiovasc. Pharmacol. 10 (Suppl. 2), S100–S102 (1987).

    PubMed  Google Scholar 

  68. Beere, P. A., Glagov, S. & Zarins, C. K. Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226, 180–182 (1984).

    CAS  PubMed  Google Scholar 

  69. Perski, A. et al. Minimum heart rate and coronary atherosclerosis: independent relations to global severity and rate of progression of angiographic lesions in men with myocardial infarction at a young age. Am. Heart J. 123, 609–616 (1992).

    CAS  PubMed  Google Scholar 

  70. Huikuri, H. V. et al. Heart rate variability and progression of coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 19, 1979–1985 (1999).

    CAS  PubMed  Google Scholar 

  71. Yamamoto, E. et al. Enhancement of cardiac oxidative stress by tachycardia and its critical role in cardiac hypertrophy and fibrosis. J. Hypertens. 24, 2057–2069 (2006).

    CAS  PubMed  Google Scholar 

  72. Rogowski, O. et al. Heart rate and microinflammation in men: a relevant atherothrombotic link. Heart 93, 940–944 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Custodis, F. et al. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117, 2377–2387 (2008).

    CAS  PubMed  Google Scholar 

  74. Custodis, F. et al. Vascular pathophysiology in response to increased heart rate. J. Am. Coll. Cardiol. 56, 1973–1983 (2010).

    CAS  PubMed  Google Scholar 

  75. Yu, W. C. et al. Tachycardia-induced change of atrial refractory period in humans: rate dependency and effects of antiarrhythmic drugs. Circulation 97, 2331–2337 (1998).

    CAS  PubMed  Google Scholar 

  76. Okin, P. M. et al. Incidence of atrial fibrillation in relation to changing heart rate over time in hypertensive patients: the LIFE study. Circ. Arrhythm. Electrophysiol. 1, 337–343 (2008).

    CAS  PubMed  Google Scholar 

  77. Bolli, R., Fisher, D. J. & Entman, M. L. Factors that determine the occurrence of arrhythmias during acute myocardial ischemia. Am. Heart J. 111, 261–270 (1986).

    CAS  PubMed  Google Scholar 

  78. Reynolds, R. D., Calzadilla, S. V. & Lee, R. J. Spontaneous heart rate, propranolol, and ischaemia-induced ventricular fibrillation in the dog. Cardiovasc. Res. 12, 653–658 (1978).

    CAS  PubMed  Google Scholar 

  79. Aupetit, J. F. et al. Efficacy of a beta-adrenergic receptor antagonist, propranolol, in preventing ischaemic ventricular fibrillation: dependence on heart rate and ischaemia duration. Cardiovasc. Res. 37, 646–655 (1998).

    CAS  PubMed  Google Scholar 

  80. Vaillant, F. et al. Ivabradine induces an increase in ventricular fibrillation threshold during acute myocardial ischemia: an experimental study. J. Cardiovasc. Pharmacol. 52, 548–554 (2008).

    CAS  PubMed  Google Scholar 

  81. Soliman, E. Z., Elsalam, M. A. & Li, Y. The relationship between high resting heart rate and ventricular arrhythmogenesis in patients referred to ambulatory 24 h electrocardiographic recording. Europace 12, 261–265 (2010).

    PubMed  Google Scholar 

  82. Engel, G. et al. Prognostic significance of PVCs and resting heart rate. Ann. Noninvasive Electrocardiol. 12, 121–129 (2007).

    PubMed  PubMed Central  Google Scholar 

  83. Adebag, A. S. et al. for the MRFIT Research Group. Relation of heart rate parameters during exercise test to sudden death and all-cause mortality in asymptomatic men. Am. J. Cardiol. 101, 1437–1443 (2008).

    Google Scholar 

  84. Leaf, A., Kang, J. X., Xiao, Y. F. & Billman, G. E. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 107, 2646–2652 (2003).

    PubMed  Google Scholar 

  85. Marchioli, R. et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Soprovvivenza nell'Infarto Miocardico (GISSI)-Prevenzione. Circulation 105, 1897–1903 (2002).

    CAS  PubMed  Google Scholar 

  86. Mozaffarian, D. et al. Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 112, 1945–1952 (2005).

    CAS  PubMed  Google Scholar 

  87. Jenkins, D. J. et al. Heterogeneity in randomized controlled trials of long chain (fish) omega-3 fatty acids in restenosis, secondary prevention and ventricular arrhythmias. J. Am. Coll. Nutr. 27, 367–378 (2008).

    CAS  PubMed  Google Scholar 

  88. de Goede, J., Geleijnse, J. M., Boer, J. M., Kromhout, D. & Verschuren, W. M. Marine (n-3) fatty acids, fish consumption, and the 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with low fish intake. J. Nutr. 140, 1023–1028 (2010).

    CAS  PubMed  Google Scholar 

  89. Galan, P. et al. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial. BMJ 341, c6273 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Kromhout, D., Giltay, E. J. & Geleinjse, J. M. for the Alpha Omega Trial Group. n-3 fatty acids and cardiovascular events after myocardial infarction. N. Engl. J. Med. 363, 2015–2026 (2010).

    CAS  PubMed  Google Scholar 

  91. Rauch, B. et al. OMEGA, a randomized, placebo-controlled trial to test the effect of highly purified omega-3 fatty acids on top of modern guideline-adjusted therapy after myocardial infarction. Circulation 122, 2152–2159 (2010).

    CAS  PubMed  Google Scholar 

  92. DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010).

    CAS  PubMed  Google Scholar 

  93. Colin, P. et al. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am. J. Physiol. Heart Circ. Physiol. 284, H676–H682 (2003).

    CAS  PubMed  Google Scholar 

  94. Heusch, G. et al. Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694 (2000).

    CAS  PubMed  Google Scholar 

  95. Seitelberger, R. et al. Intracoronary alpha 2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ. Res. 62, 436–442 (1988).

    CAS  PubMed  Google Scholar 

  96. Simon, L., Ghaleh, B., Puybasset, L., Giudicelli, J.-F. & Berdeaux, A. Coronary and hemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J. Pharmacol. Exp. Ther. 275, 659–666 (1995).

    CAS  PubMed  Google Scholar 

  97. Colin, P. et al. Differential effects of heart rate reduction and beta-blockade on left ventricular relaxation during exercise. Am. J. Physiol. Heart Circ. Physiol. 282, H672–H679 (2002).

    CAS  PubMed  Google Scholar 

  98. Lucats, L. et al. Heart rate reduction by inhibition of If or by β-blockade has different effects on postsystolic wall thickening. Br. J. Pharmacol. 150, 335–341 (2007).

    CAS  PubMed  Google Scholar 

  99. Lucats, L. et al. Conversion of post-systolic wall thickening into ejectional thickening by selective heart rate reduction during myocardial stunning. Eur. Heart J. 28, 872–879 (2007).

    PubMed  Google Scholar 

  100. Zhang, R. L., Christensen, L. P. & Tomanek, R. J. Chronic heart rate reduction facilitates cardiomyocyte survival after myocardial infarction. Anat. Rec. (Hoboken) 293, 839–848 (2010).

    Google Scholar 

  101. Mulder, P. et al. Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109, 1674–1679 (2004).

    CAS  PubMed  Google Scholar 

  102. Ceconi, C. et al. Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 300, H366–H373 (2011).

    CAS  PubMed  Google Scholar 

  103. Monnet, X. et al. Effects of heart rate reduction with ivabradine on exercise-induced myocardial ischemia and stunning. J. Pharmacol. Exp. Ther. 299, 1133–1139 (2001).

    CAS  PubMed  Google Scholar 

  104. Palatini, P. & Julius, S. Elevated heart rate: a major risk factor for cardiovascular disease. Clin. Exp. Hypertens. 26, 637–644 (2004).

    CAS  PubMed  Google Scholar 

  105. Fox, K. et al. for the Heart Rate Working Group. Resting heart rate in cardiovascular disease. J. Am. Coll. Cardiol. 50, 823–830 (2007).

    PubMed  Google Scholar 

  106. Diaz, A., Bourassa, M. G., Guertin, M. C. & Tardif, J. C. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur. Heart J. 26, 967–974 (2005).

    PubMed  Google Scholar 

  107. Rambihar, S. et al. Heart rate is associated with increased risk of major cardiovascular events, cardiovascular and all-cause death in patients with stable chronic cardiovascular disease—an analysis of ONTARGET/TRANSCEND [Abstract 12667]. Circulation 122, A12667 (2010).

    Google Scholar 

  108. Fox, K. et al. for the BEAUTIFUL investigators. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet 372, 817–821 (2008).

    PubMed  Google Scholar 

  109. Böhm, M. et al. for the SHIFT Investigators. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376, 886–894 (2010).

    PubMed  Google Scholar 

  110. Fox, K., Ford, I., Steg, P. G., Tendera, M. & Ferrari, R for the BEAUTIFUL Investigators. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a randomised, double-blind, placebo-controlled trial. Lancet 372, 807–816 (2008).

    CAS  PubMed  Google Scholar 

  111. Swedberg, K. et al. for the SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).

    CAS  PubMed  Google Scholar 

  112. Bangalore, S., Sawhney, S. & Messerli, F. H. Relation of beta-blocker induced heart rate lowering and cardioprotection in hypertension. J. Am. Coll. Cardiol. 52, 1482–1489 (2008).

    CAS  PubMed  Google Scholar 

  113. Williams, B. et al. for the CAFE Investigators. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113, 1213–1225 (2006).

    CAS  PubMed  Google Scholar 

  114. Williams, B. & Lacy, P. S. for the CAFE and ASCOT (Anglo-Scandinavian Cardiac Outcomes Trial) Investigators. Impact of heart rate on central aortic pressures and hemodynamics: analysis from the CAFE (Conduit Artery Function Evaluation) study: CAFE-Heart Rate. J. Am. Coll. Cardiol. 54, 705–713 (2009).

    PubMed  Google Scholar 

  115. Palatini, P., Benetos, A. & Julius, S. Impact of increased heart rate on clinical outcomes in hypertension: implications for antihypertensive drug therapy. Drugs 66, 133–144 (2006).

    CAS  PubMed  Google Scholar 

  116. Wilkinson, I. B. et al. The influence of heart rate on augmentation index and central arterial pressure in humans. J. Physiol. 525, 263–270 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sharman, J. E., Davies, J. E., Jenkins, C. & Marwick, T. H. Augmentation index, left ventricular contractility, and wave reflection. Hypertension 54, 1099–1105 (2009).

    CAS  PubMed  Google Scholar 

  118. Poole-Wilson, P. A. et al. for the Coronary disease Trial Investigating Outcome with Nifedipine gastrointestinal therapeutic system investigators. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet 364, 849–857 (2004).

    CAS  PubMed  Google Scholar 

  119. James, W. T. et al. for the SCOUT Investigators. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N. Engl. J. Med. 363, 905–917 (2010).

    CAS  PubMed  Google Scholar 

  120. Daly, C. A. et al. for the Euro Heart Survey Investigators. Inadequate control of heart rate in patients with stable angina: results from the European Heart Survey. Postgrad. Med. J. 86, 212–217 (2010).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the article in terms of researching data, discussion of content, writing, and reviewing and editing the manuscript before submission and after peer-review and editing.

Corresponding author

Correspondence to Kim M. Fox.

Ethics declarations

Competing interests

K. M. Fox and R. Ferrari have acted as consultants for, and received research support and honoraria from, Servier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, K., Ferrari, R. Heart rate: a forgotten link in coronary artery disease?. Nat Rev Cardiol 8, 369–379 (2011). https://doi.org/10.1038/nrcardio.2011.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing