Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental switch from GABA to glycine release in single central synaptic terminals

Abstract

Early in postnatal development, inhibitory inputs to rat lateral superior olive (LSO) neurons change from releasing predominantly GABA to releasing predominantly glycine into the synapse. Here we show that spontaneous miniature inhibitory postsynaptic currents (mIPSCs) also change from GABAergic to glycinergic over the first two postnatal weeks. Many 'mixed' mIPSCs, resulting from co-release of glycine and GABA from the same vesicles, are seen during this transition. Immunohistochemistry showed that a large number of terminals contained both GABA and glycine at postnatal day 8 (P8). By P14, both the content of GABA in these mixed terminals and the contribution of GABA to the mixed mIPSCs had decreased. The content of glycine in terminals increased over the same period. Our results indicate that switching from GABAergic to glycinergic inputs to the LSO may occur at the level of a single presynaptic terminal. This demonstrates a new form of developmental plasticity at the level of a single central synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental change in the bicuculline sensitivity of IPSCs recorded in LSO neurons in response to electrical stimulation of the ventromedial aspect of the LSO brain slice.
Figure 2: Pharmacological and kinetic isolation of GABAergic, glycinergic and mixed mIPSCs in voltage-clamped, isolated LSO neurons.
Figure 3: Developmental change in mIPSCs recorded in isolated LSO neurons.
Figure 4: Developmental decrease in the contribution of the GABAergic component to mixed mIPCSs.
Figure 5: Quantitative analysis of GABA and glycine content in presynaptic terminals using immunogold staining and electron microscopy.
Figure 6: Immunohistochemical staining of GAD and glycine in the developing LSO.

Similar content being viewed by others

References

  1. Ornung, G. et al. Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: a postembedding electron microscopic study. J. Comp. Neurol. 365, 413–426 (1996).

    Article  CAS  Google Scholar 

  2. Yang, H.W., Min, M.Y., Appenteng, K. & Batten, T.F. Glycine-immunoreactive terminals in the rat trigeminal motor nucleus: light- and electron-microscopic analysis of their relationships with motoneurones and with GABA-immunoreactive terminals. Brain Res. 749, 301–319 (1997).

    Article  CAS  Google Scholar 

  3. Levi, S., Chesnoy-Marchais, D., Sieghart, W. & Triller, A. Synaptic control of glycine and GABAA receptors and gephyrin expression in cultured motoneurons. J. Neurosci. 19, 7434–7449 (1999).

    Article  CAS  Google Scholar 

  4. Kneussel, M. & Betz, H. Receptors, gephyrin and gephyrin-associated proteins: novel insights into the assembly of inhibitory postsynaptic membrane specializations. J. Physiol. 525, 1–9 (2000).

    Article  CAS  Google Scholar 

  5. O'Brien, J.A. & Berger, A.J. Cotransmission of GABA and glycine to brain stem motoneurons. J. Neurophysiol. 82, 1638–1641 (1999).

    Article  CAS  Google Scholar 

  6. Jonas, P., Bischofberger, J. & Sandkuhler, J. Co-release of two fast neurotransmitters at a central synapse. Science 281, 419–424 (1998).

    Article  CAS  Google Scholar 

  7. Russier, M., Kopysova, I.L., Ankri, N., Ferrand, N. & Debanne, D. GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J. Physiol. 541,123–137 (2002).

    Article  CAS  Google Scholar 

  8. Kotak, V.C., Korada, S., Schwartz, I.R. & Sanes, D.H. A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J. Neurosci. 18, 4646–4655 (1998).

    Article  CAS  Google Scholar 

  9. Smith, A.J., Owens, S. & Forsythe, I.D. Characterization of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol. 529, 681–698 (2000).

    Article  CAS  Google Scholar 

  10. Sanes, D.H. & Friauf, E. Development and influence of inhibition in the lateral superior olivary nucleus. Hear. Res. 147, 46–58 (2000).

    Article  CAS  Google Scholar 

  11. Korada, S. & Schwartz, I.R. Development of GABA, glycine, and their receptors in the auditory brainstem of gerbil: a light and electron microscopic study. J. Comp. Neurol. 409, 664–681 (1999).

    Article  CAS  Google Scholar 

  12. del Castillo, J. & Katz, B. Quantal components of end-plate potential. J. Physiol. 124, 560–573 (1954).

    Article  CAS  Google Scholar 

  13. Walmsley, B., Alvarez, F.J. & Fyffe, R.E. Diversity of structure and function at mammalian central synapses. Trends Neurosci. 21, 81–88 (1998).

    Article  CAS  Google Scholar 

  14. Akaike, N. & Moorhouse, A.J. Techniques: applications of the nerve-bouton preparation in neuropharmacology. Trends Pharmacol. Sci. 24, 44–47 (2003).

    Article  CAS  Google Scholar 

  15. Dumoulin, A., Triller, A. & Dieudonne, S. IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J. Neurosci. 21, 6045–6057 (2001).

    Article  CAS  Google Scholar 

  16. Keller, A.F., Coull, J.A., Chery, N., Poisbeau, P. & De Koninck, Y. Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J. Neurosci. 21, 7871–7880 (2001).

    Article  CAS  Google Scholar 

  17. Friauf, E, Hammerschmidt, B. & Kirsch, J. Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J. Comp. Neurol. 385, 117–134 (1997).

    Article  CAS  Google Scholar 

  18. Otis, T.S., De Koninck, Y. & Mody, I. Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents. Proc. Natl. Acad. Sci. USA 91, 7698–7702 (1994).

    Article  CAS  Google Scholar 

  19. Sanes, D.H. & Siverls, V. Development and specificity of inhibitory terminal arborizations in the central nervous system. J. Neurobiol. 22, 837–854 (1991).

    Article  CAS  Google Scholar 

  20. Kim, G. & Kandler, K. Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nat. Neurosci. 6, 282–290 (2003).

    Article  CAS  Google Scholar 

  21. Gasnier, B. The loading of neurotransmitters into synaptic vesicles. Biochimie 82, 327–337 (2000).

    Article  CAS  Google Scholar 

  22. Schotzinger, R.J. & Landis, S.C. Cholinergic phenotype developed by noradrenergic sympathetic neurons after innervation of a novel cholinergic target in vivo. Nature 335, 637–639 (1988).

    Article  CAS  Google Scholar 

  23. Habecker, B.A., Tresser, S.J., Rao, M.S. & Landis, S.C. Production of sweat gland cholinergic differentiation factor depends on innervation. Dev. Biol. 167, 307–316 (1995).

    Article  CAS  Google Scholar 

  24. Rietzel, H.J. & Friauf, E. Neuron types in the rat lateral superior olive and developmental changes in the complexity of their dendritic arbors. J. Comp. Neurol. 390, 20–40 (1998).

    Article  CAS  Google Scholar 

  25. Takahashi, T., Momiyama, A., Hirai, K., Hishinuma, F. & Akagi, H. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9, 1155–1161 (1992).

    Article  CAS  Google Scholar 

  26. Kakazu, Y., Akaike, N., Komiyama, S. & Nabekura, J. Regulation of intracellular chloride by cotransporters in developing lateral superior olive neurons. J. Neurosci. 19, 2843–2851 (1999).

    Article  CAS  Google Scholar 

  27. Kandler, K. & Friauf E. Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats. J. Neurosci. 15, 6890–6904 (1995).

    Article  CAS  Google Scholar 

  28. Balakrishnan, V. et al. Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J. Neurosci. 23, 4134–4145 (2003).

    Article  CAS  Google Scholar 

  29. Kullmann, P.H., Ene, F.A. & Kandler, K. Glycinergic and GABAergic calcium responses in the developing lateral superior olive. Eur. J. Neurosci. 15, 1093–1104 (2002).

    Article  Google Scholar 

  30. Gao, B.X. & van den Pol, A.N. GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J. Neurophysiol. 85, 425–434 (2001).

    Article  CAS  Google Scholar 

  31. Ganguly, K., Schinder, A.F., Wong, S.T. & Poo, M. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105, 521–532 (2001).

    Article  CAS  Google Scholar 

  32. Lauder, J.M., Liu, J., Devaud, L. & Morrow, A.L. GABA as a trophic factor for developing monoamine neurons. Perspect. Dev. Neurobiol. 5, 247–259 (1998).

    CAS  PubMed  Google Scholar 

  33. Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998).

    Article  CAS  Google Scholar 

  34. Kotak, V.C., DiMattina, C. & Sanes, D.H. GABAB and Trk receptor signaling mediates long-lasting inhibitory synaptic depression. J. Neurophysiol. 86, 536–540 (2001).

    Article  CAS  Google Scholar 

  35. Chang, E.H., Kotak, V.C. & Sanes, D.H. Long-term depression of synaptic inhibition is expressed postsynaptically in the developing auditory system. J. Neurophysiol. 90, 1479–1788 (2003).

    Article  CAS  Google Scholar 

  36. Kakazu, H., Uchida, S., Nakagawa, T., Akaike, N. & Nabekura, J. Reversibility and cation selectivity of K+-Cl cotransport in rat CNS Neurons. J. Neurophysiol. 84, 281–288 (2000).

    Article  CAS  Google Scholar 

  37. Nabekura J., Omura T. & Akaike N. Alpha2 adrenoceptor potentiates glycine receptor-mediated taurine response through protein kinase A in rat substantia nigra neurons. J. Neurophysiol. 76, 2447–2454 (1996).

    Article  CAS  Google Scholar 

  38. Matsubara, A., Laake, J.H., Davanger, S., Usami, S. & Ottersen, O.P. Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. 16, 4457–4467 (1996).

    Article  CAS  Google Scholar 

  39. Ottersen, O.P., Zhang, N. & Walberg, F. Metabolic compartmentation of glutamate and glutamine morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46, 519–534 (1992).

    Article  CAS  Google Scholar 

  40. Kaufman, D.L., McGinnis, J.F., Krieger, N.R. & Tobin, A.J. Brain glutamate decarboxylase cloned in lambda gt-11: fusion protein produces gamma-aminobutyric acid. Science 232, 1138–1140 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Moorhouse for discussion and editing of the manuscript, and N. Akaike for technical advice. We also thank O.P. Otterson, I.J. Kopin, W.H. Oertel, D.E. Schmechel and M.L. Tappaz for help obtaining antibodies. This work was supported by research grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan (15016082, 15650076 and 15390065 to J.N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Nabekura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sensitivity of antibody to GABA and glycine. Test sections were incubated in the same drops of glycine and GABA antibodies together with LSO sections. Note that the glycine conjugates are stained selectively positive for the 10 nm gold particles while the GABA conjugates are immunolabeled for 20 nm gold particles. None: without addition of any amino acid. (JPG 14 kb)

Supplementary Fig. 2

Histogram showing the particle densities representing the sum of GABA and glycine in the presynaptic terminals in the P14 rat LSO. Note that the histogram displays two peaks, less than 5 and more than 10. Thus, particle densities less than 5 (particles/μm2) of GABA and glycine were considered to show background level labeling. Terminals > 5 (particles/μm2) were employed for analysis as inhibitory terminals. (JPG 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabekura, J., Katsurabayashi, S., Kakazu, Y. et al. Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7, 17–23 (2004). https://doi.org/10.1038/nn1170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing