Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local synthesis of complement component C3 regulates acute renal transplant rejection

Abstract

Accumulating evidence suggests that innate immunity interacts with the adaptive immune system to identify potentially harmful antigens and eliminate them from the host. A central facet of innate immunity is complement, which for some time has been recognized as a contributor to inflammation in transplant rejection but without detailed analysis of its role in what is principally a T cell–mediated process. Moreover, epithelial and vascular tissues at local sites of inflammation secrete complement components; however, the role of such local synthesis remains unclear. Here we show that the absence of locally synthesized complement component C3 is capable of modulating the rejection of renal allografts in vivo and regulating T-cell responses in vivo and in vitro. The results indicate that improved success in kidney transplantation could come from therapeutic manipulation of innate immunity in concert with T cell–directed immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of deficient local C3 synthesis on transplant survival and function.
Figure 2: Localization of C3 mRNA and protein in transplanted tissues.
Figure 3: Mixed lymphocyte reaction in recipients of wild-type or C3−/− grafts.
Figure 4: Allostimulation with PTEC.
Figure 5: Expansion of CD4+CR1/2+ murine splenocytes after in vitro stimulation.
Figure 6: Phenotype of CD4+CR1/2+ cells in rejecting transplant recipients.

Similar content being viewed by others

References

  1. Kinoshita, T. Biology of complement: The overture. Immunol. Today 12, 291–295 (1991).

    Article  CAS  Google Scholar 

  2. Passwell, J., Schreiner, G.F., Nonaka, M., Beuscher, H.U. & Colten, H.R. Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. J. Clin. Invest. 82, 1676–1684 (1988).

    Article  CAS  Google Scholar 

  3. Andrews, P.A. et al. Expression and tissue localization of donor-specific complement C3 synthesized in human renal allografts. Eur. J. Immunol. 25, 1087–1093 (1995).

    Article  CAS  Google Scholar 

  4. Brooimans, R.A. et al. Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells. J. Clin. Invest. 88, 379–384 (1991).

    Article  CAS  Google Scholar 

  5. Andrews, P.A., Pani, A., Zhou, W. & Sacks, S.H. Local transcription of complement C3 in human allograft rejection. Evidence for a pathogenic role and correlation to histology and outcome. Transplantation 58, 637–640 (1994).

    Article  CAS  Google Scholar 

  6. Tang, S., Zhou, W., Sheerin, S., Vaughan, R.W. & Sacks, S.H. Contribution of renal secreted complement C3 to the circulating pool in humans. J. Immunol. 162, 4336–4341 (1999).

    CAS  Google Scholar 

  7. Pratt, J.R., Abe, K., Miyazaki, M., Zhou, W. & Sacks, S.H. In situ localization of C3 synthesis in experimental acute renal allograft rejection. Am. J. Pathol. 157, 825–831 (2000).

    Article  CAS  Google Scholar 

  8. Passwell, J.H., Schreiner, G.F., Wetsel, R.A. & Colten, H.R. Complement gene expression in hepatic and extrahepatic tissues of NZB and NZB×W (F1) mouse strains. Immunology 71, 290–294 (1990).

    CAS  Google Scholar 

  9. Hagerty, D.T. & Allen, P.M. Processing and presentation of self and foreign antigens by the renal proximal tubule. J. Immunol. 148, 2324–2330 (1992).

    CAS  Google Scholar 

  10. Kelley, V.R. & Singer, G.G. The antigen presentation function of renal tubular epithelial cells. Exp. Nephrol. 1, 102–111 (1993).

    CAS  Google Scholar 

  11. Banu, N. & Meyers, C.M. IFN-γ and LPS differentially modulate class II MHC and B7-1 expression on murine renal tubular epithelial cells. Kidney Int. 55, 2250–2263 (1999).

    Article  CAS  Google Scholar 

  12. Takei, Y., Sims, T.N., Urmson, J. & Halloran, P.F. Central role for interferon-γ receptor in the regulation of renal MHC expression. J. Am. Soc. Nephrol. 11, 250–261 (2000).

    CAS  Google Scholar 

  13. Meri, S. & Jarva, H. Complement regulation. Vox Sang. 74 (Suppl. 2), 291–302 (1998).

    Article  CAS  Google Scholar 

  14. Kozono, Y. et al. Cross-linking CD21/CD35 or CD19 increases both B7-1 and B7-2 expression on murine splenic B cells. J. Immunol. 160, 1565–1572 (1998).

    CAS  Google Scholar 

  15. Janeway, C.A. Approaching the asymptote? Evolution and revolution in immunology. Cold. Spring Harb. Symp. Quant. Biol. 54 (Pt. 1), 1–13 (1989).

    Article  CAS  Google Scholar 

  16. Matzinger, P. An innate sense of danger. Sem. Immunol. 10, 399–415 (1998).

    Article  CAS  Google Scholar 

  17. Arvieux, J., Yssel, H. & Colomb, M.G. Antigen-bound C3b and C4b enhance antigen-presenting cell function in activation of human T-cell clones. Immunol. 65, 229–235 (1988).

    CAS  Google Scholar 

  18. Jacquier-Sarlin, M.R., Gabert, F.M., Villiers, M.B. & Colomb, M.G. Modulation of antigen processing and presentation by covalently linked complement C3b fragment. Immunol. 84, 164–170 (1995).

    CAS  Google Scholar 

  19. Prechl, J. & Erdei, A. Immunomodulatory functions of murine CR1/2. Immunopharmacology 49, 117–124 (2000).

    Article  CAS  Google Scholar 

  20. Dempsey, P.W., Allison, M.E., Akkaraju, S., Goodnow, C.C. & Fearon, D.T. C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity. Science 271, 348–350 (1996).

    Article  CAS  Google Scholar 

  21. Mongini, P.K., Vilensky, M.A., Highet, P.F. & Inman, J.K. The affinity threshold for human B cell activation via the antigen receptor complex is reduced upon co-ligation of the antigen receptor with CD21 (CR2). J. Immunol. 159, 3782–3791 (1997).

    CAS  Google Scholar 

  22. Tosello, A.C., Mary, F., Amiot, M., Bernard, A. & Mary, D. Activation of T cells via CD55: Recruitment of early components of the CD3-TCR pathway is required for IL-2 secretion. J. Inflam. 48, 13–27 (1998).

    CAS  Google Scholar 

  23. Cheng, P.C., Dykstra, M.L., Mitchell, R.N. & Pierce, S.K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 190, 1549–1560 (1999).

    Article  CAS  Google Scholar 

  24. Biancone, L. et al. Alternative pathway activation of complement by cultured human proximal tubular epithelial cells. Kidney Int. 45, 451–460 (1994).

    Article  CAS  Google Scholar 

  25. Zhou, W., Farrar, C.A. et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J. Clin. Invest. 105, 1363–1371 (2000).

    Article  CAS  Google Scholar 

  26. Morgan, B.P. & Gasque, P. Extrahepatic complement biosynthesis: Where, when and why? Clin. Exp. Immunol. 107, 1–7 (1997).

    Article  CAS  Google Scholar 

  27. Abe, K. et al. Expression of decay accelerating factor mRNA and complement C3 mRNA in human diseased kidney. Kidney Int. 54, 120–130 (1998).

    Article  CAS  Google Scholar 

  28. Breitner, S., Storkel, S., Reichel, W. & Loos, M. Complement components C1q, C1r/C1s, and C1INH in rheumatoid arthritis. Correlation of In situ hybridization and northern blot results with function and protein concentration in synovium and primary cell cultures. Arthritis Rheum. 38, 492–498 (1995).

    Article  CAS  Google Scholar 

  29. Gasgue, P., Fontaine, M. & Morgan, B.P. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J. Immunol. 154, 4726–4733 (1995).

    Google Scholar 

  30. Kalina, S.L. & Mottram, P.L. A microsurgical technique for renal transplantation in mice. Aust. N. Z. J. Surg. 63, 213–216 (1993).

    Article  CAS  Google Scholar 

  31. Pratt, J.R., Hibbs, M.J., Laver, A.J., Smith, R.A. & Sacks, S.H. Effects of complement inhibition with soluble complement receptor-1 on vascular injury and inflammation during renal allograft rejection in the rat. Am. J. Pathol. 149, 2055–2066 (1996).

    CAS  Google Scholar 

  32. Tang, S., Sheerin, N.S., Zhou, W., Brown, Z. & Sacks, S.H. Apical proteins stimulate complement synthesis by cultured human proximal tubular epithelial cells. J. Am. Soc. Nephrol. 10, 69–76 (1999).

    CAS  Google Scholar 

  33. Sheerin, N.S., Springall, T., Abe, K. & Sacks, S.H. Protection and injury: The differing roles of complement in the development of glomerular injury. Eur. J. Immunol. 31, 1255–1260.

  34. Sasaki, O. et al. Intraglomerular C3 synthesis in rats with passive Heymann nephritis. Am. J. Pathol. 151, 1249–1256 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H. Sacks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, J., Basheer, S. & Sacks, S. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat Med 8, 582–587 (2002). https://doi.org/10.1038/nm0602-582

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0602-582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing