Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures

Abstract

Malaria relapses, resulting from the activation of quiescent hepatic hypnozoites of Plasmodium vivax and Plasmodium ovale, hinder global efforts to control and eliminate malaria. As primaquine, the only drug capable of eliminating hypnozoites, is unsuitable for mass administration, an alternative drug is needed urgently. Currently, analyses of hypnozoites, including screening of compounds that would eliminate them, can only be made using common macaque models, principally Macaca rhesus and Macaca fascicularis, experimentally infected with the relapsing Plasmodium cynomolgi. Here, we present a protocol for long-term in vitro cultivation of P. cynomolgi–infected M. fascicularis primary hepatocytes during which hypnozoites persist and activate to resume normal development. In a proof-of-concept experiment, we obtained evidence that exposure to an inhibitor of histone modification enzymes implicated in epigenetic control of gene expression induces an accelerated rate of hypnozoite activation. The protocol presented may further enable investigations of hypnozoite biology and the search for compounds that kill hypnozoites or disrupt their quiescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Persistence of P. cynomolgi hypnozoites.
Figure 2: Activation of hypnozoites over time.
Figure 3: Induction of hypnozoite activation by a histone methyltransferase inhibitor.
Figure 4: Schematic diagram of the long-term primary hepatocyte cultures.

Similar content being viewed by others

References

  1. Garnham, P.C.C. Malaria Parasites and Other Haemosporidia (Blackwell Scientific Publications, Oxford, 1966).

  2. Coatney, G.R., Collins, W.E., Warren, M. & Contacos, P.G. The Primate Malarias (US Government Printing Office, Washington, DC, 1971).

  3. Shortt, H.E. & Garnham, P.C.C. Demonstration of a persisting exo-erythrocytic cycle in P. cynomolgi and its bearing on the production of relapses. BMJ 1, 1225–1228 (1948).

    Article  CAS  Google Scholar 

  4. Krotoski, W.A. et al. Relapses in primate malaria: discovery of two populations of exoerythrocytic stages. Preliminary note. BMJ 280, 153–154 (1980).

    Article  CAS  Google Scholar 

  5. Krotoski, W.A. et al. Observations on early and late post-sporozoite tissue stages in primate malaria. I. Discovery of a new latent form of Plasmodium cynomolgi (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. Am. J. Trop. Med. Hyg. 31, 24–35 (1982).

    Article  CAS  Google Scholar 

  6. Cogswell, F.B. The hypnozoite and relapse in primate malaria. Clin. Microbiol. Rev. 5, 26–35 (1992).

    Article  CAS  Google Scholar 

  7. Shute, P.G. et al. A strain of Plasmodium vivax characterized by prolonged incubation: the effect of numbers of sporozoites on the length of the prepatent period. Trans. R. Soc. Trop. Med. Hyg. 70, 474–481 (1976).

    Article  CAS  Google Scholar 

  8. Mazier, D., Rénia, L. & Snounou, G. A pre-emptive strike against malaria's stealthy hepatic forms. Nat. Rev. Drug Discov. 8, 854–864 (2009).

    Article  CAS  Google Scholar 

  9. Wells, T.N.C., Burrows, J.N. & Baird, J.K. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination. Trends Parasitol. 26, 145–151 (2010).

    Article  Google Scholar 

  10. Schmidt, L.H. et al. Plasmodium cynomolgi infections in the rhesus monkey. Am. J. Trop. Med. Hyg. 31, 609–703 (1982).

    Article  CAS  Google Scholar 

  11. Kocken, C.H.M. et al. Statistical model to evaluate in vivo activities of antimalarial drugs in a Plasmodium cynomolgi-macaque model for Plasmodium vivax malaria. Antimicrob. Agents Chemother. 53, 421–427 (2009).

    Article  CAS  Google Scholar 

  12. Dembélé, L. et al. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS ONE 6, e18162 (2011).

    Article  Google Scholar 

  13. Bray, R.S. Studies on the Exo-erythrocytic Cycle in the Genus Plasmodium (Lewis & Co. Ltd, London, 1957).

  14. Prudêncio, M., Rodriguez, A. & Mota, M.M. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat. Rev. Microbiol. 4, 849–856 (2006).

    Article  Google Scholar 

  15. Guguen-Guillouzo, C. & Guillouzo, A. General review on in vitro hepatocyte models and their applications. Methods Mol. Biol. 640, 1–40 (2010).

    Article  CAS  Google Scholar 

  16. Clement, B. et al. Long-term co-cultures of adult human hepatocytes with rat liver epithelial cells: modulation of albumin secretion and accumulation of extracellular material. Hepatology 4, 373–380 (1984).

    Article  CAS  Google Scholar 

  17. Mazier, D. et al. Cultivation of the liver forms of Plasmodium vivax in human hepatocytes. Nature 307, 367–369 (1984).

    Article  CAS  Google Scholar 

  18. Gripon, P. et al. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99, 15655–15660 (2002).

    Article  CAS  Google Scholar 

  19. Sturm, A. et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science 313, 1287–1290 (2006).

    Article  CAS  Google Scholar 

  20. Dunn, J.C., Yarmush, M.L., Koebe, H.G. & Tompkins, R.G. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3, 174–177 (1989).

    Article  CAS  Google Scholar 

  21. Kono, Y., Yang, S. & Roberts, E.A. Extended primary culture of human hepatocytes in a collagen gel sandwich system. In Vitro Cell. Dev. Biol. Anim. 33, 467–472 (1997).

    Article  CAS  Google Scholar 

  22. Bissell, D.M., Arenson, D.M., Maher, J.J. & Roll, F.J. Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J. Clin. Invest. 79, 801–812 (1987).

    Article  CAS  Google Scholar 

  23. Lopez-Rubio, J.J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5, 179–190 (2009).

    Article  CAS  Google Scholar 

  24. Malmquist, N.A., Moss, T.A., Mecheri, S., Scherf, A. & Fuchter, M.J. Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 109, 16708–16713 (2012).

    Article  CAS  Google Scholar 

  25. White, N.J. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar. J. 10, 297 (2011).

    Article  Google Scholar 

  26. Atkinson, C.T., Millet, P.G., Collins, W.E. & Aikawa, M. Localization of circumsporozoite antigen in exoerythrocytic schizonts of Plasmodium cynomolgi. Am. J. Trop. Med. Hyg. 40, 131–140 (1989).

    Article  CAS  Google Scholar 

  27. Barter, Z.E. et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr. Drug Metab. 8, 33–45 (2007).

    Article  CAS  Google Scholar 

  28. Hollingdale, M.R., Collins, W.E., Campbell, C.C. & Schwartz, A.L. In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. Am. J. Trop. Med. Hyg. 34, 216–222 (1985).

    Article  CAS  Google Scholar 

  29. Hollingdale, M.R., Collins, W.E. & Campbell, C.C. In vitro culture of exoerythrocytic parasites of the North Korean strain of Plasmodium vivax in hepatoma cells. Am. J. Trop. Med. Hyg. 35, 275–276 (1986).

    Article  CAS  Google Scholar 

  30. Liu, D., Luo, S., Ye, B., Shu, H. & Fu, R. Demonstration of in vitro cultured exoerythrocytic schizonts and hypnozoites of Plasmodium vivax (southern China isolate) by an immunoperoxidase antibody technique. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 13, 86–88 (1995).

    CAS  PubMed  Google Scholar 

  31. Shu, H., Lou, S., Liu, D. & Fu, R. [Observation on hypnozoite of different isolates of Plasmodium vivax in cultured materials]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 13, 185–188 (1995).

    CAS  PubMed  Google Scholar 

  32. Chattopadhyay, R. et al. Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLoS ONE 5, e14275 (2010).

    Article  Google Scholar 

  33. Hoffman, S.L. et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin. 6, 97–106 (2010).

    Article  CAS  Google Scholar 

  34. Voorberg-van der Wel, A. et al. Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of malaria hypnozoite-forms. PLoS ONE 8, e54888 (2013).

    Article  CAS  Google Scholar 

  35. Painter, H.J., Campbell, T.L. & Llinás, M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176, 1–7 (2011).

    Article  CAS  Google Scholar 

  36. Liu, F. et al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem. 53, 5844–5857 (2010).

    Article  CAS  Google Scholar 

  37. Silvie, O. et al. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat. Med. 9, 93–96 (2003).

    Article  CAS  Google Scholar 

  38. Castaing, M. et al. Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells. Diabetologia 48, 709–719 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a translational research grant (WT078285) from the Wellcome Trust, a grant from the Medicines for Malaria Venture to the Novartis Institute for Tropical Diseases (Singapore), the Biomedical Primate Research Centre (the Netherlands), the Université Pierre et Marie Curie–Paris 6 (France), a Seventh Framework Programme EU European Research Council Executive Agency Advanced Grant (Plasmoescape 250320) to A.S. and a Laboratoires d'Excellence (LABEX) grant (ANR-11-LABX0024) from the Agence Nationale de la Recherche (France). We are grateful to T.A. Moss (Imperial College London) for the chemical synthesis of TM2-115. HepaRG cells were provided by C. Guguen-Guillouzo (Biopredic International). pTRIP-CMV-GFP ΔU3 vector was provided by P. Ravassard (le Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière). We thank the staff of the Flow Cytometry Core CyPS at the Université Pierre et Marie Curie (Pitié-Salpêtrière Hospital, Paris, France) for their help and assistance. Finally, we thank A.C. Grüner for her excellent critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.M., G.S. and A.S. designed the study. L.D., J.-F.F., A.L. and A.G. designed and performed the experiments. A.-M.Z., C.H.M.K., R.L.G., N.D.-B., G.-J.v.G., R.S., J.-C.V., L.H., M.J.F., T.T.D. and N.A.M. contributed essential materials. G.S. and D.M. wrote the paper.

Corresponding author

Correspondence to Georges Snounou.

Ethics declarations

Competing interests

T.T.D. is a Novartis employee and owns Novartis shares.

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dembélé, L., Franetich, JF., Lorthiois, A. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20, 307–312 (2014). https://doi.org/10.1038/nm.3461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing