Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation

Abstract

T cell–specific deletion of the receptor for transforming growth factor-β (TGF-β) mediated by Cre recombinase expressed early in T cell development leads to early-onset lethal autoimmune disease that cannot be controlled by regulatory T cells. However, when we deleted that receptor through the use of Cre driven by a promoter that is active much later in T cell development, adult mice in which most peripheral CD4+ or CD8+ T cells lacked the receptor for TGF-β showed no signs of autoimmunity. Because of their enhanced responses to weak stimulation of the T cell antigen receptor, when transferred into lymphopenic recipients, naive TGF-β-unresponsive T cells underwent much more proliferation and differentiation into effector cells and induced lymphoproliferative disease. We propose that TGF-β signaling controls the self-reactivity of peripheral T cells but that in the absence of TGF-β signals, an added trigger such as lymphopenia is needed to drive overt autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of T cells in adult TGF-βRII-deficient mice.
Figure 2: Greatly enhanced lymphopenia-induced proliferation of TGF-βRII-deficient T cells in Rag1−/− mice.
Figure 3: TGF-βRII-deficient T cells induce lymphoproliferative disease in Rag1−/− recipient mice.
Figure 4: Considerably enhanced lymphopenia-induced proliferation of TGF-βRII-deficient T cells in sublethally irradiated B6 mice.
Figure 5: In vitro hyperproliferative response of TGF-βRII-deficient CD8+ T cells to weak stimulation.
Figure 6: In vitro hyperproliferative response of wild-type CD8+ T cells to weak stimulation in the absence of TGF-β.
Figure 7: TGF-βRII-deficient CD4+ T cells induce autoimmune disease in Rag1−/− mice, whereas TGF-βRII-deficient CD8+ T cells do so only in the presence of CD4+ T cells.

Similar content being viewed by others

References

  1. Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K. & Flavell, R.A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Massagué, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blobe, G.C., Schiemann, W.P. & Lodish, H.F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hill, C.S. Nucleocytoplasmic shuttling of Smad proteins. Cell Res. 19, 36–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y.E. Non-Smad pathways in TGF-β signaling. Cell Res. 19, 128–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Ikushima, H. & Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nat. Rev. Cancer 10, 415–424 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, L., Pang, Y. & Moses, H.L. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31, 220–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kulkarni, A.B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diebold, R.J. et al. Early-onset multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte mediated. Proc. Natl. Acad. Sci. USA 92, 12215–12219 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bommireddy, R. et al. Elimination of both CD4+ and CD8+ T cells but not B cells eliminates inflammation and prolongs the survival of TGFβ1-deficient mice. Cell. Immunol. 232, 96–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Rudner, L.A. et al. Necroinflammatory liver disease in BALB/c background, TGF-β1-deficient mice requires CD4+ T cells. J. Immunol. 170, 4785–4792 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Letterio, J.J. et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest. 98, 2109–2119 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gorelik, L. & Flavell, R.A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lucas, P.J., Kim, S.J., Melby, S.J. & Gress, R.E. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor βII receptor. J. Exp. Med. 191, 1187–1196 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Marie, J.C., Liggitt, D. & Rudensky, A.Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Li, M.O., Wan, Y.Y. & Flavell, R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Sprent, J. & Surh, C.D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat. Immunol. 12, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kieper, W.C. et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol. 174, 3158–3163 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Min, B., Yamane, H., Hu-Li, J. & Paul, W.E. Spontaneous and homeostatic proliferation of CD4 T cells are regulated by different mechanisms. J. Immunol. 174, 6039–6044 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. King, C., Ilic, A., Koelsch, K. & Sarvetnick, N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117, 265–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Krupica, T. Jr., Fry, T.J. & Mackall, C.L. Autoimmunity during lymphopenia: a two-hit model. Clin. Immunol. 120, 121–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Le Campion, A. et al. Lymphopenia-induced spontaneous T-cell proliferation as a cofactor for autoimmune disease development. Blood 114, 1784–1793 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Hale, J.S., Ames, K.T., Boursalian, T.E. & Fink, P.J. Cutting edge: Rag deletion in peripheral T cells blocks TCR revision. J. Immunol. 184, 5964–5968 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, D.J. et al. Selective expression of the Cre recombinase in late-stage thymocytes using the distal promoter of the Lck gene. J. Immunol. 174, 6725–6731 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. El-Asady, R. et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease. J. Exp. Med. 201, 1647–1657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng, T., Wang, L., Schoeb, T.R., Elson, C.O. & Cong, Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J. Exp. Med. 207, 1321–1332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zehn, D., Lee, S.Y. & Bevan, M.J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Doisne, J.M. et al. iNKT cell development is orchestrated by different branches of TGF-β signaling. J. Exp. Med. 206, 1365–1378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ouyang, W., Beckett, O., Ma, Q. & Li, M.O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Levéen, P. et al. TGF-β type II receptor-deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo. Blood 106, 4234–4240 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Karlsson (Lund University) for Tgfbr2f/f mice; P.J. Fink (University of Washington, Seattle) for mice with transgenic expression of Cre from the distal Lck promoter; A.G. Farr for help with histology, T. Bergsbaken for help with the immunofluorescence microscopy; and P.J. Fink for comments on the manuscript. Supported by US National Institutes of Health (AI19335) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.Z. and M.J.B. designed experiments and wrote the paper, and N.Z. did the experiments.

Corresponding author

Correspondence to Michael J Bevan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 4968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Bevan, M. TGF-β signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol 13, 667–673 (2012). https://doi.org/10.1038/ni.2319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing