Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases

Abstract

Maintenance of immune tolerance in the periphery can be envisioned as a balance between autoreactive lymphocytes and regulatory mechanisms that counteract them. The naturally occurring CD4+CD25+ regulatory T cells (TREGs) have a major role in modulating the activity of self-reactive cells. The identification of Forkhead box P3 transcription factor (FoxP3) as the critical determinant of TREG development and function has provided new opportunities and generated expanded interest in studying the balance between autoimmunity and regulatory mechanisms in human autoimmune diseases. The identification of both human and mouse diseases resulting from the lack of FoxP3 expression, and consequently the absence of TREGs, has rapidly expanded knowledge of TREG development and function during the past 5 years. Although it is still unclear how these regulatory cells function, they can inhibit the activation of potentially pathogenic T cells in vitro. Using in vitro functional assays and phenotypic analysis, TREGs isolated from patients with a variety of autoimmune diseases have been shown to exhibit reduced regulatory function as compared with those isolated from healthy controls. This Review will focus on the current state of knowledge on human TREGs and their association with specific autoimmune diseases.

Key Points

  • Regulatory T cells (TREGs) can be generated within the thymus or in peripheral tissues

  • Several autoimmune diseases have deficient TREG function during active disease

  • The proposed mechanisms of action of TREGs include influencing the migration of effectors to target organs or draining lymph nodes, prevention of priming by acting on antigen-presenting cells, induction of anergy in potential effectors, and prevention of the acquisition of effector function as effector T cells, killer effector cells or antigen-presenting cells

  • Studies investigating the function of TREGs in autoimmune diseases will provide further insight into the biology of these cells and might lead to the identification of new therapeutic targets

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of CD4+CD25hi regulatory T cells and their role in autoimmune diseases.

Similar content being viewed by others

References

  1. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562

    Article  CAS  Google Scholar 

  2. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 389–400

    Article  CAS  Google Scholar 

  3. Thornton AM and Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188: 287–296

    Article  CAS  Google Scholar 

  4. Belkaid Y et al. (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502–507

    Article  CAS  Google Scholar 

  5. Aluvihare VR et al. (2004) Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol 5: 266–271

    Article  CAS  Google Scholar 

  6. Lu LF et al. (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442: 997–1002

    Article  CAS  Google Scholar 

  7. Shevach EM (2001) Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med 193: F41–46

    Article  CAS  Google Scholar 

  8. Hori S et al. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061

    Article  CAS  Google Scholar 

  9. Yamagiwa S et al. (2001) A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 166: 7282–7289

    Article  CAS  Google Scholar 

  10. Chen W et al. (2003) Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198: 1875–1886

    Article  CAS  Google Scholar 

  11. Bettelli E et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238

    Article  CAS  Google Scholar 

  12. Gavin MA et al. (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103: 6659–6664

    Article  CAS  Google Scholar 

  13. Walker MR et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J Clin Invest 112: 1437–1443

    Article  CAS  Google Scholar 

  14. Valencia X et al. (2006) TNF down-modulates the function of human CD4+CD25hi T regulatory cells. Blood 108: 253–261

    Article  CAS  Google Scholar 

  15. Davidson TS et al. (2007) Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 178: 4022–4026

    Article  CAS  Google Scholar 

  16. Baecher-Allan C and Hafler DA (2004) Suppressor T cells in human diseases. J Exp Med 200: 273–276

    Article  CAS  Google Scholar 

  17. Baecher-Allan C et al. (2001) CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167: 1245–1253

    Article  CAS  Google Scholar 

  18. Liu W et al. (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203: 1701–1711

    Article  CAS  Google Scholar 

  19. Seddiki N et al. (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203: 1693–1700

    Article  CAS  Google Scholar 

  20. Valencia X et al. (2007) Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178: 2579–2588

    Article  CAS  Google Scholar 

  21. Harnaha J et al. (2006) Interleukin-7 is a survival factor for CD4+ CD25+ T-cells and is expressed by diabetes-suppressive dendritic cells. Diabetes 55: 158–170

    Article  CAS  Google Scholar 

  22. Cao D et al. (2003) Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 33: 215–223

    Article  CAS  Google Scholar 

  23. Prakken BJ et al. (2004) Epitope-specific immunotherapy induces immune deviation of proinflammatory T cells in rheumatoid arthritis. Proc Natl Acad Sci USA 101: 4228–4233

    Article  CAS  Google Scholar 

  24. Feldmann M et al. (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14: 397–440

    Article  CAS  Google Scholar 

  25. Hirota K et al. (2007) T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med 204: 41–47

    Article  CAS  Google Scholar 

  26. Pasare C and Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299: 1033–1036

    Article  CAS  Google Scholar 

  27. Ehrenstein MR et al. (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200: 277–285

    Article  CAS  Google Scholar 

  28. Nadkarni S et al. (2007) Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med 204: 33–39

    Article  CAS  Google Scholar 

  29. Weaver CT et al. (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25: 821–852

    Article  CAS  Google Scholar 

  30. Veldhoen M et al. (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189

    Article  CAS  Google Scholar 

  31. Mills JA (1994) Systemic lupus erythematosus. N Engl J Med 330: 1871–1879

    Article  CAS  Google Scholar 

  32. Cohen PL (1993) T- and B-cell abnormalities in systemic lupus. J Invest Dermatol 100: 69S–72S

    Article  CAS  Google Scholar 

  33. Kotzin BL (1996) Systemic lupus erythematosus. Cell 85: 303–306

    Article  CAS  Google Scholar 

  34. Lim HW et al. (2005) Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175: 4180–4183

    Article  CAS  Google Scholar 

  35. Lim HW et al. (2004) Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114: 1640–1649

    Article  CAS  Google Scholar 

  36. Crispin JC et al. (2003) Quantification of regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun 21: 273–276

    Article  Google Scholar 

  37. Liu MF et al. (2004) Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol 59: 198–202

    Article  Google Scholar 

  38. Lee JH et al. (2006) Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology 117: 280–286

    Article  CAS  Google Scholar 

  39. Miyara M et al. (2005) Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175: 8392–8400

    Article  CAS  Google Scholar 

  40. Fontenot JD et al. (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6: 1142–1151

    Article  CAS  Google Scholar 

  41. Tsokos GC et al. (2003) T cell abnormalities in human and mouse lupus: intrinsic and extrinsic. Curr Opin Rheumatol 15: 542–547

    Article  CAS  Google Scholar 

  42. Aringer M and Smolen JS (2004) Tumour necrosis factor and other proinflammatory cytokines in systemic lupus erythematosus: a rationale for therapeutic intervention. Lupus 13: 344–347

    Article  CAS  Google Scholar 

  43. Banchereau J and Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25: 383–392

    Article  CAS  Google Scholar 

  44. Franz B et al. (2007) Low number of regulatory T cells in skin lesions of patients with cutaneous lupus erythematosus. Arthritis Rheum 56: 1910–1920

    Article  CAS  Google Scholar 

  45. Fox RI and Maruyama T (1997) Pathogenesis and treatment of Sjogren's syndrome. Curr Opin Rheumatol 9: 393–399

    Article  CAS  Google Scholar 

  46. Gottenberg JE et al. (2005) CD4 CD25high regulatory T cells are not impaired in patients with primary Sjogren's syndrome. J Autoimmun 24: 235–242

    Article  CAS  Google Scholar 

  47. Abdulahad WH et al. (2007) Functional defect of circulating regulatory CD4+ T cells in patients with Wegener's granulomatosis in remission. Arthritis Rheum 56: 2080–2091

    Article  CAS  Google Scholar 

  48. Miyara M et al. (2006) The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 203: 359–370

    Article  Google Scholar 

  49. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113: 788–794

    Article  CAS  Google Scholar 

  50. Viglietta V et al. (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199: 971–979

    Article  CAS  Google Scholar 

  51. Haas J et al. (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol 35: 3343–3352

    Article  CAS  Google Scholar 

  52. Korn T et al. (2007) Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 13: 423–431

    Article  CAS  Google Scholar 

  53. Balandina A et al. (2005) Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105: 735–741

    Article  CAS  Google Scholar 

  54. Fattorossi A et al. (2005) Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology 116: 134–141

    Article  CAS  Google Scholar 

  55. Maillard MH et al. (2007) The Wiskott–Aldrich syndrome protein is required for the function of CD4(+)CD25(+)Foxp3(+) regulatory T cells. J Exp Med 204: 381–391

    Article  CAS  Google Scholar 

  56. Chen Z et al. (2005) How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc Natl Acad Sci USA 102: 14735–14740

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Valencia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valencia, X., Lipsky, P. CD4+CD25+FoxP3+ regulatory T cells in autoimmune diseases. Nat Rev Rheumatol 3, 619–626 (2007). https://doi.org/10.1038/ncprheum0624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing