Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Infant pain management: a developmental neurobiological approach

Abstract

Infant pain is a clinical reality. Effective pain management in infants requires a specialist approach—analgesic protocols that have been designed for older children cannot simply be scaled down for CNS pain pathways and analgesic targets that are in a state of developmental transition. Here, we discuss the particular challenges that are presented by an immature CNS for the detection and treatment of pain. We show how the application of neurophysiological and neuropharmacological approaches can help to overcome the problems inherent in measuring and treating pain in infants, and how research data in these areas can be used to devise age-appropriate methods of assessing pain as well as strategies for pain relief. The evidence that untreated pain in infancy results in long-term adverse consequences is presented, thereby emphasizing the need for a longer term view of infant pain management.

Key Points

  • Neonatal and infant pain management is largely based on clinical experience and extrapolation of data from older age-groups; improvements in perioperative analgesia are being increasingly made on the basis of evidence-based recommendations, but further research is required to establish the most effective analgesic protocols in early life, particularly for management of procedural pain and sedation in ventilated neonates in intensive care

  • A considerable challenge to infant pain management is presented by the fact that maturation of CNS pain pathways and postnatal changes in neural processing have a major impact on infant pain sensation and behavior and sensitivity to analgesia

  • Measurement of pain with observational tools in preverbal infants requires informed analysis, as interpretation of the data depends upon the maturational stage of pain behavior

  • Neurophysiological analysis of developing pain pathways can provide important insights into pain measurement in infants and provide new knowledge about persistent inflammatory and neuropathic pain states in infancy

  • Postnatal changes in the expression, distribution and function of transmitters and receptors required for analgesic action have a major impact on the pharmacodynamic profile of analgesics, and understanding these processes can inform and improve the design of future clinical trials

  • The fact that neural pathways are still undergoing maturation in early life means that tissue injury can alter the normal course of development, leading to long-term changes in somatosensory processing and pain sensitivity; laboratory studies give an increased understanding of the factors that trigger these changes and how to prevent them

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key sites of developmental transition in infant pain pathways.
Figure 2: Methods of assessing infant pain.
Figure 3: The long-term impact of infant pain.

Similar content being viewed by others

References

  1. McGrath PJ and Unruh AM (2002) The social context of neonatal pain. Clin Perinatol 29: 555–572

    Article  PubMed  Google Scholar 

  2. Anand KJ et al. (2007) Pain in Neonates and Infants. Edinburgh: Elsevier

    Google Scholar 

  3. Fitzgerald M and Walker S (2003) The role of activity in developing pain pathways. In Proceedings of the 10th World Congress on Pain: Progress in Pain Research and Management, vol 24, 185–196 (Eds Dostrovsky J. et al.) Seattle: IASP Press

    Google Scholar 

  4. Walker SM (2008) Pain in children: recent advances and ongoing challenges. Br J Anaesth 101: 101–110

    Article  CAS  PubMed  Google Scholar 

  5. Howard RF et al. (2008) Association of Paediatric Anaesthetists: good practice in postoperative and procedural pain. Paediatr Anaesth 18 (Suppl 1): S1–S81

    Article  Google Scholar 

  6. Berde CB et al. (2005) Anesthesia and analgesia during and after surgery in neonates. Clin Ther 27: 900–921

    Article  CAS  PubMed  Google Scholar 

  7. Howard RF (2003) Current status of pain management in children. JAMA 290: 2464–2469

    Article  CAS  PubMed  Google Scholar 

  8. Stevens BJ et al. (2007) Assessment of pain in neonates and infants. In Pain in Neonates and Infants, edn 3, 67–90 (Eds Anand KJS. et al.) Edinburgh: Elsevier

    Google Scholar 

  9. Fitzgerald M (2005) The development of nociceptive circuits. Nat Rev Neurosci 6: 507–520

    Article  CAS  PubMed  Google Scholar 

  10. Baccei M and Fitzgerald M (2005) Development of pain pathways and mechanisms. In The Textbook of Pain, 143–148 (Eds McMahon SB and Koltzenburg M) London: Churchill Livingstone

    Google Scholar 

  11. Pattinson D and Fitzgerald M (2004) The neurobiology of infant pain: development of excitatory and inhibitory neurotransmission in the spinal dorsal horn. Reg Anesth Pain Med 29: 36–44

    Article  PubMed  Google Scholar 

  12. Anand KJ et al. (1987) Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet 1: 62–66

    Article  CAS  PubMed  Google Scholar 

  13. De Lima J et al. (1996) Infant and neonatal pain: anaesthetists' perceptions and prescribing patterns. BMJ 313: 787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tibboel D et al. (2005) The pharmacological treatment of neonatal pain. Semin Fetal Neonatal Med 10: 195–205

    Article  CAS  PubMed  Google Scholar 

  15. Hammer GB and Golianu B (2007) Opioid analgesia in neonates following cardiac surgery. Semin Cardiothorac Vasc Anesth 11: 47–58

    Article  PubMed  Google Scholar 

  16. Anderson BJ and Palmer GM (2006) Recent developments in the pharmacological management of pain in children. Curr Opin Anaesthesiol 19: 285–292

    Article  PubMed  Google Scholar 

  17. van der Marel CD et al. (2007) Rectal acetaminophen does not reduce morphine consumption after major surgery in young infants. Br J Anaesth 98: 372–379

    Article  CAS  PubMed  Google Scholar 

  18. Simons SH et al. (2003) Do we still hurt newborn babies? A prospective study of procedural pain and analgesia in neonates. Arch Pediatr Adolesc Med 157: 1058–1064

    Article  PubMed  Google Scholar 

  19. Carbajal R et al. (2008) Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA 300: 60–70

    Article  CAS  PubMed  Google Scholar 

  20. Slater R et al. (2006) Cortical pain responses in human infants. J Neurosci 26: 3662–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allegaert K et al. (2003) Systematic evaluation of pain in neonates: effect on the number of intravenous analgesics prescribed. Eur J Clin Pharmacol 59: 87–90

    Article  PubMed  Google Scholar 

  22. Lago P et al. (2005) Pain management in the neonatal intensive care unit: a national survey in Italy. Paediatr Anaesth 15: 925–931

    Article  PubMed  Google Scholar 

  23. Stevens B et al. (2003) Procedural pain in newborns at risk for neurologic impairment. Pain 105: 27–35

    Article  PubMed  Google Scholar 

  24. Shah P et al. Breastfeeding or breast milk for procedural pain in neonates. Cochrane Database of Systematic Reviews 2006, Issue 3. Art. No.: CD004950. 10.1002/14651858.CD004950.pub2

    Google Scholar 

  25. Stevens B et al. Sucrose for analgesia in newborn infants undergoing painful procedures. Cochrane Database of Systematic Reviews 2004, Issue 3. Art. No.: CD001069. 10.1002/14651858.CD001069.pub2

    Google Scholar 

  26. Taddio A et al. (1997) Efficacy and safety of lidocaine–prilocaine cream for pain during circumcision. N Engl J Med 336: 1197–1201

    Article  CAS  PubMed  Google Scholar 

  27. Shah V and Ohlsson A. Venepuncture versus heel lance for blood sampling in term neonates. Cochrane Database of Systematic Reviews 2007, Issue 4. Art. No.: CD001452. 10.1002/14651858.CD001452.pub3

    Google Scholar 

  28. Shah VS et al. (2008) Topical amethocaine gel 4% for intramuscular injection in term neonates: a double–blind, placebo–controlled, randomized trial. Clin Ther 30: 166–174

    Article  CAS  PubMed  Google Scholar 

  29. Brady–Fryer B et al. Pain relief for neonatal circumcision. Cochrane Database of Systematic Reviews 2004, Issue 3. Art. No.: CD004217. 10.1002/14651858.CD004217.pub2

    Google Scholar 

  30. Anand KJ et al. (1999) Analgesia and sedation in preterm neonates who require ventilatory support: results from the NOPAIN trial: Neonatal Outcome and Prolonged Analgesia in Neonates. Arch Pediatr Adolesc Med 153: 331–338

    Article  CAS  PubMed  Google Scholar 

  31. Carbajal R et al. (2005) Morphine does not provide adequate analgesia for acute procedural pain among preterm neonates. Pediatrics 115: 1494–1500

    Article  PubMed  Google Scholar 

  32. Bouwmeester NJ et al. (2003) Postoperative pain in the neonate: age–related differences in morphine requirements and metabolism. Intensive Care Med 29: 2009–2015

    Article  PubMed  Google Scholar 

  33. Anand KJ et al. (2004) Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet 363: 1673–1682

    Article  CAS  PubMed  Google Scholar 

  34. Hall RW et al. (2005) Morphine, hypotension, and adverse outcomes among preterm neonates: who's to blame? Secondary results from the NEOPAIN trial. Pediatrics 115: 1351–1359

    Article  PubMed  Google Scholar 

  35. Bellù R et al. Opioids for neonates receiving mechanical ventilation. Cochrane Database of Systematic Reviews 2008, Issue 1. Art. No.: CD004212. 10.1002/14651858.CD004212.pub3

    Google Scholar 

  36. Ng E et al. Intravenous midazolam infusion for sedation of infants in the neonatal intensive care unit. Cochrane Database of Systematic Reviews 2003, Issue 1. Art. No.: CD002052. 10.1002/14651858.CD002052

    Google Scholar 

  37. Roze JC et al. (2008) Prolonged sedation and/or analgesia and 5–year neurodevelopment outcome in very preterm infants: results from the EPIPAGE cohort. Arch Pediatr Adolesc Med 162: 728–733

    Article  PubMed  Google Scholar 

  38. Fitzgerald M et al. (1989) Cutaneous hypersensitivity following peripheral tissue damage in newborn infants and its reversal with topical anaesthesia. Pain 39: 31–36

    Article  CAS  PubMed  Google Scholar 

  39. Woolf CJ and Ma Q (2007) Nociceptors—noxious stimulus detectors. Neuron 55: 353–364

    Article  CAS  PubMed  Google Scholar 

  40. Hucho T and Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55: 365–376

    Article  CAS  PubMed  Google Scholar 

  41. Price DD (2002) Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2: 392–403, 339

    Article  PubMed  Google Scholar 

  42. Tracey I and Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55: 377–391

    Article  CAS  PubMed  Google Scholar 

  43. Woolf CJ (2007) Central sensitization: uncovering the relation between pain and plasticity. Anesthesiology 106: 864–867

    Article  PubMed  Google Scholar 

  44. Ji RR et al. (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26: 696–705

    Article  CAS  PubMed  Google Scholar 

  45. Sandkuhler J (2007) Understanding LTP in pain pathways. Mol Pain 3: 9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zeilhofer HU (2008) Loss of glycinergic and GABAergic inhibition in chronic pain––contributions of inflammation and microglia. Int Immunopharmacol 8: 182–187

    Article  CAS  PubMed  Google Scholar 

  47. Salter MW (2005) Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr Top Med Chem 5: 557–567

    Article  CAS  PubMed  Google Scholar 

  48. Translating time across developing mammalian brains [http://www.translatingtime.net]

  49. Beggs S et al. (2002) The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. Eur J Neurosci 16: 1249–1258

    Article  PubMed  Google Scholar 

  50. Granmo et al. (2008) Action–based body maps in the spinal cord emerge from a transitory floating organization. J Neurosci 28: 5494–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jennings E and Fitzgerald M (1998) Postnatal changes in responses of rat dorsal horn cells to afferent stimulation: a fibre-induced sensitization. J Physiol 509: 859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keller AF et al. (2004) Production of 5α–reduced neurosteroids is developmentally regulated and shapes GABA(A) miniature IPSCs in lamina II of the spinal cord. J Neurosci 24: 907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cordero-Erausquin M et al. (2005) Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. J Neurosci 25: 9613–9623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ingram RA et al. (2008) Developmental changes in the fidelity and short-term plasticity of GABAergic synapses in the neonatal rat dorsal horn. J Neurophysiol 99: 3144–3150

    Article  CAS  PubMed  Google Scholar 

  55. Bremner LR and Fitzgerald M (2008) Postnatal tuning of cutaneous inhibitory receptive fields in the rat. J Physiol 586: 1529–1537

    Article  CAS  PubMed  Google Scholar 

  56. Andrews K and Fitzgerald M (2002) Wound sensitivity as a measure of analgesic effects following surgery in human neonates and infants. Pain 99: 185–195

    Article  PubMed  Google Scholar 

  57. Torsney C and Fitzgerald M (2002) Age-dependent effects of peripheral inflammation on the electrophysiological properties of neonatal rat dorsal horn neurons. J Neurophysiol 87: 1311–1317

    Article  PubMed  Google Scholar 

  58. Ririe DG et al. (2003) Age-dependent responses to thermal hyperalgesia and mechanical allodynia in a rat model of acute postoperative pain. Anesthesiology 99: 443–448

    Article  PubMed  Google Scholar 

  59. Walker SM et al. (2007) Primary and secondary hyperalgesia can be differentiated by postnatal age and ERK activation in the spinal dorsal horn of the rat pup. Pain 128: 157–168

    Article  CAS  PubMed  Google Scholar 

  60. Andrews et al. (2002) Abdominal sensitivity in the first year of life: comparison of infants with and without prenatally diagnosed unilateral hydronephrosis. Pain 100: 35–46

    Article  CAS  PubMed  Google Scholar 

  61. Taddio A et al. (2002) Conditioning and hyperalgesia in newborns exposed to repeated heel lances. JAMA 288: 857–861

    Article  PubMed  Google Scholar 

  62. Ririe DG et al. (2006) Developmental differences in spinal cyclooxygenase 1 expression after surgical incision. Anesthesiology 104: 426–431

    Article  CAS  PubMed  Google Scholar 

  63. Ren K and Dubner R (2002). Descending modulation in persistent pain: an update. Pain 100: 1–6

    Article  PubMed  Google Scholar 

  64. Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27: 729–737

    Article  CAS  PubMed  Google Scholar 

  65. Bodnar RJ (2007) Endogenous opiates and behavior: 2006. Peptides 28: 2435–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Melzack R and Wall PD (1966) The Challenge of Pain. London: Penguin Books

    Google Scholar 

  67. van Praag H and Frenk H (1991) The development of stimulation-produced analgesia (SPA) in the rat. Brain Res Dev Brain Res 64: 71–76

    Article  CAS  PubMed  Google Scholar 

  68. Fitzgerald M and Koltzenburg M (1986) The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res 389: 261–270

    Article  CAS  PubMed  Google Scholar 

  69. Hathway G et al. (2006) A postnatal switch in GABAergic control of spinal cutaneous reflexes. Eur J Neurosci 23: 112–118

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kostovic I and Jovanov–Milosevic N (2006) The development of cerebral connections during the first 20–45 weeks' gestation. Semin Fetal Neonatal Med 11: 415–422

    Article  PubMed  Google Scholar 

  71. Apkarian AV et al. (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463–484

    Article  PubMed  Google Scholar 

  72. Colonnese MT et al. (2008) Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 11: 72–79

    Article  CAS  PubMed  Google Scholar 

  73. Grunau RV and Craig KD (1987) Pain expression in neonates: facial action and cry. Pain 28: 395–410

    Article  CAS  PubMed  Google Scholar 

  74. Australian and New Zealand College of Anaesthitists and Faculty of Pain Medicine (2005) Acute pain management: scientific evidence [http://www.nhmrc.gov.au/publications/synopses/cp104syn.htm] (accessed 5 November 2008)

  75. Lynn AM et al. (2000) Intravenous morphine in postoperative infants: intermittent bolus dosing versus targeted continuous infusions. Pain 88: 89–95

    Article  CAS  PubMed  Google Scholar 

  76. Bouwmeester NJ et al. (2004) Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 92: 208–217

    Article  CAS  PubMed  Google Scholar 

  77. Kart T et al. (1997) Recommended use of morphine in neonates, infants and children based on a literature review: part 1: pharmacokinetics. Paediatr Anaesth 7: 5–11

    Article  CAS  PubMed  Google Scholar 

  78. Bouwmeester NJ et al. (2003) Age- and therapy-related effects on morphine requirements and plasma concentrations of morphine and its metabolites in postoperative infants. Br J Anaesth 90: 642–652

    Article  CAS  PubMed  Google Scholar 

  79. Williams DG et al. (2002) Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth 89: 839–845

    Article  CAS  PubMed  Google Scholar 

  80. Allegaert K et al. (2008) Covariates of tramadol disposition in the first months of life. Br J Anaesth 100: 525–532

    Article  CAS  PubMed  Google Scholar 

  81. Anderson BJ et al. (2002) Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology 96: 1336–1345

    Article  CAS  PubMed  Google Scholar 

  82. Allegaert K et al. (2004) Intravenous paracetamol (propacetamol) pharmacokinetics in term and preterm neonates. Eur J Clin Pharmacol 60: 191–197

    Article  CAS  PubMed  Google Scholar 

  83. Anderson BJ et al. (2005) Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Paediatr Anaesth 15: 282–292

    Article  PubMed  Google Scholar 

  84. Gibb IA and Anderson BJ (2008) Paracetamol (acetaminophen) pharmacodynamics: interpreting the plasma concentration. Arch Dis Child 93: 241–247

    Article  CAS  PubMed  Google Scholar 

  85. Taddio A et al. (1997) Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 349: 599–603

    Article  CAS  PubMed  Google Scholar 

  86. Abdulkader HM et al. (2008) Prematurity and neonatal noxious events exert lasting effects on infant pain behaviour. Early Hum Dev 84: 351–355

    Article  PubMed  Google Scholar 

  87. Hermann C et al. (2006) Long–term alteration of pain sensitivity in school-aged children with early pain experiences. Pain 125: 278–285

    Article  PubMed  Google Scholar 

  88. Peters JW et al. (2005) Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain 114: 444–454

    Article  PubMed  Google Scholar 

  89. Schmelzle–Lubiecki BM et al. (2007) Long–term consequences of early infant injury and trauma upon somatosensory processing. Eur J Pain 11: 799–809

    Article  PubMed  Google Scholar 

  90. Walker SM et al. (2008) Long-term impact of neonatal intensive care and surgery on somatosensory perception in children born extremely preterm. Pain [10.1016/j.pain.2008.10.012]

  91. Hohmeister J et al. (2008) Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur J Pain [10.1016/j.ejpain.2008.03.004]

  92. Grunau RV et al. (1994) Pain sensitivity and temperament in extremely low-birth-weight premature toddlers and preterm and full–term controls. Pain 58: 341–346

    Article  CAS  PubMed  Google Scholar 

  93. Grunau RE et al. (2004) Psychosocial and academic characteristics of extremely low birth weight (< or =800 g) adolescents who are free of major impairment compared with term–born control subjects. Pediatrics 114: e725–e732

    Article  PubMed  Google Scholar 

  94. Marlow N et al. (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352: 9–19

    Article  CAS  PubMed  Google Scholar 

  95. Bhutta AT et al. (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta–analysis. JAMA 288: 728–737

    Article  PubMed  Google Scholar 

  96. Slater R et al. (2008) How well do clinical pain assessment tools reflect pain in infants? PLoS Med 5: e129

    Article  PubMed  PubMed Central  Google Scholar 

  97. Andrews K and Fitzgerald M (1994) The cutaneous withdrawal reflex in human neonates: sensitization, receptive fields, and the effects of contralateral stimulation. Pain 56: 95–101

    Article  CAS  PubMed  Google Scholar 

  98. Fitzgerald M et al. (1988) Postnatal development of the cutaneous flexor reflex: comparative study of preterm infants and newborn rat pups. Dev Med Child Neurol 30: 520–526

    Article  CAS  PubMed  Google Scholar 

  99. Andrews K and Fitzgerald M (2000) Flexion reflex responses in biceps femoris and tibialis anterior in human neonates. Early Hum Dev 57: 105–110

    Article  CAS  PubMed  Google Scholar 

  100. Andrews K and Fitzgerald M (1999) Cutaneous flexion reflex in human neonates: a quantitative study of threshold and stimulus–response characteristics after single and repeated stimuli. Dev Med Child Neurol 41: 696–703

    Article  CAS  PubMed  Google Scholar 

  101. Taddio A and Katz J (2005) The effects of early pain experience in neonates on pain responses in infancy and childhood. Paediatr Drugs 7: 245–257

    Article  PubMed  Google Scholar 

  102. Holsti L et al. (2006). Behavioral responses to pain are heightened after clustered care in preterm infants born between 30 and 32 weeks gestational age. Clin J Pain 22: 757–764

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ren K et al. (2004) Characterization of basal and re–inflammation–associated long–term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain 110: 588–596

    Article  CAS  PubMed  Google Scholar 

  104. Sternberg WF et al. (2005). Long-term effects of neonatal surgery on adulthood pain behavior. Pain 113: 347–353

    Article  PubMed  Google Scholar 

  105. Howard RF et al. (2005) The ontogeny of neuropathic pain: postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain 115: 382–389

    Article  PubMed  Google Scholar 

  106. Ririe DG and Eisenach JC (2006) Age–dependent responses to nerve injury–induced mechanical allodynia. Anesthesiology 104: 344–350

    Article  PubMed  Google Scholar 

  107. Baccei ML (2007) Development of pain: maturation of spinal inhibitory networks. Int Anesthesiol Clin 45: 1–11

    Article  PubMed  Google Scholar 

  108. Lee DH and Chung JM (1996) Neuropathic pain in neonatal rats. Neurosci Lett 209: 140–142

    Article  CAS  PubMed  Google Scholar 

  109. Anand P and Birch R (2002) Restoration of sensory function and lack of long–term chronic pain syndromes after brachial plexus injury in human neonates. Brain 125: 113–122

    Article  CAS  PubMed  Google Scholar 

  110. McCann ME et al. (2004) Self-mutilation in young children following brachial plexus birth injury. Pain 110: 123–129

    Article  PubMed  Google Scholar 

  111. Vega–Avelaira D et al. (2007) Age-related changes in the spinal cord microglial and astrocytic response profile to nerve injury. Brain Behav Immun 21: 617–623

    Article  CAS  PubMed  Google Scholar 

  112. Moss A et al. (2007) Spinal microglia and neuropathic pain in young rats. Pain 128: 215–224

    Article  CAS  PubMed  Google Scholar 

  113. Sternberg WF and Ridgway CG (2003) Effects of gestational stress and neonatal handling on pain, analgesia, and stress behavior of adult mice. Physiol Behav 78: 375–383

    Article  CAS  PubMed  Google Scholar 

  114. Pattinson D et al. (2006) Aberrant dendritic branching and sensory inputs in the superficial dorsal horn of mice lacking CaMKIIα autophosphorylation. Mol Cell Neurosci 33: 88–95

    Article  CAS  PubMed  Google Scholar 

  115. Waldenstrom A et al. (2003) Developmental learning in a pain–related system: evidence for a cross–modality mechanism. J Neurosci 23: 7719–7725

    Article  PubMed  PubMed Central  Google Scholar 

  116. Berde C and Cairns B (2000) Developmental pharmacology across species: promise and problems. Anesth Analg 91: 1–5

    CAS  PubMed  Google Scholar 

  117. Woolf CJ (2004) Pain: moving from symptom control toward mechanism–specific pharmacologic management. Ann Intern Med 140: 441–451

    Article  PubMed  Google Scholar 

  118. Cepeda MS et al. (2003) What decline in pain intensity is meaningful to patients with acute pain? Pain 105: 151–157

    Article  PubMed  Google Scholar 

  119. McDowell J and Kitchen I (1987) Development of opioid systems: peptides, receptors and pharmacology. Brain Res 434: 397–421

    Article  CAS  PubMed  Google Scholar 

  120. Nandi R and Fitzgerald M (2005) Opioid analgesia in the newborn. Eur J Pain 9: 105–108

    Article  CAS  PubMed  Google Scholar 

  121. Nandi R et al. (2004) The functional expression of mu opioid receptors on sensory neurons is developmentally regulated; morphine analgesia is less selective in the neonate. Pain 111: 38–50

    Article  CAS  PubMed  Google Scholar 

  122. Vabnick I and Shrager P (1998) Ion channel redistribution and function during development of the myelinated axon. J Neurobiol 37: 80–96

    Article  CAS  PubMed  Google Scholar 

  123. Hu D et al. (1997) Neurologic evaluation of infant and adult rats before and after sciatic nerve blockade. Anesthesiology 86: 957–965

    Article  CAS  PubMed  Google Scholar 

  124. Kohane DS et al. (1998) Sciatic nerve blockade in infant, adolescent, and adult rats: a comparison of ropivacaine with bupivacaine. Anesthesiology 89: 1199–1208

    Article  CAS  PubMed  Google Scholar 

  125. Howard RF et al. (2001) Inflammatory pain and hypersensitivity are selectively reversed by epidural bupivacaine and are developmentally regulated. Anesthesiology 95: 421–427

    Article  CAS  PubMed  Google Scholar 

  126. Baccei ML and Fitzgerald M (2004) Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci 24: 4749–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koch SC et al. (2008) Midazolam potentiates nociceptive behavior, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology 108: 122–129

    Article  CAS  PubMed  Google Scholar 

  128. Walker SM et al. (2005) Developmental age influences the effect of epidural dexmedetomidine on inflammatory hyperalgesia in rat pups. Anesthesiology 102: 1226–1234

    Article  CAS  PubMed  Google Scholar 

  129. Walker SM and Fitzgerald M (2007) Characterization of spinal alpha–adrenergic modulation of nociceptive transmission and hyperalgesia throughout postnatal development in rats. Br J Pharmacol 151: 1334–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yaksh TL (2007) Neonates have a spinal alpha receptor too, as do adults. Br J Pharmacol 151: 1139–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Olney JW et al. (2004) Do pediatric drugs cause developing neurons to commit suicide? Trends Pharmacol Sci 25: 135–139

    Article  CAS  PubMed  Google Scholar 

  132. Mellon RD et al. (2007) Use of anesthetic agents in neonates and young children. Anesth Analg 104: 509–520

    Article  CAS  PubMed  Google Scholar 

  133. Slikker W Jr et al. (2007) Ketamine–induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98: 145–158

    Article  CAS  PubMed  Google Scholar 

  134. Fredriksson A et al. (2007) Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107: 427–436

    Article  CAS  PubMed  Google Scholar 

  135. Jevtovic-Todorovic V et al. (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23: 876–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Soriano SG et al. (2005) Of mice and men: should we extrapolate rodent experimental data to the care of human neonates? Anesthesiology 102: 866–868; author reply 868–869

    Article  PubMed  Google Scholar 

  137. Young C et al. (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146: 189–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Johnson SA et al. (2008) Isoflurane-induced neuroapoptosis in the developing brain of nonhypoglycemic mice. J Neurosurg Anesthesiol 20: 21–28

    Article  PubMed  Google Scholar 

  139. Yon JH et al. (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135: 815–827

    Article  CAS  PubMed  Google Scholar 

  140. Cunha-Oliveira T et al. (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58: 192–208

    Article  CAS  PubMed  Google Scholar 

  141. Chen YL et al. (2008) The other side of the opioid story: modulation of cell growth and survival signaling. Curr Med Chem 15: 772–778

    Article  CAS  PubMed  Google Scholar 

  142. Rizzi S et al. (2008) Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol 18: 198–210

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lim G et al. (2005) Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis. Neurosci Lett 389: 104–108

    Article  CAS  PubMed  Google Scholar 

  144. Hu S et al. (2002) Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42: 829–836

    Article  CAS  PubMed  Google Scholar 

  145. Clancy B et al. (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5: 79–94

    Article  PubMed  Google Scholar 

  146. Doyle LW (2001) Outcome at 5 years of age of children 23 to 27 weeks' gestation: refining the prognosis. Pediatrics 108: 134–141

    Article  CAS  PubMed  Google Scholar 

  147. Kabra NS et al. (2007) Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the Trial of Indomethacin Prophylaxis in Preterms. J Pediatr 150: 229–234, 234 e1

    Article  CAS  PubMed  Google Scholar 

  148. Schulzke SM et al. (2007) Neurodevelopmental outcomes of very low–birth–weight infants with necrotizing enterocolitis: a systematic review of observational studies. Arch Pediatr Adolesc Med 161: 583–590

    Article  PubMed  Google Scholar 

  149. Rees CM et al. (2007) Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fetal Neonatal Ed 92: F193–F198

    Article  PubMed  Google Scholar 

  150. Ruda MA et al. (2000) Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 289: 628–631

    Article  CAS  PubMed  Google Scholar 

  151. Walker SM et al. (2003) Neonatal inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain 105: 185–195

    Article  PubMed  Google Scholar 

  152. Chu YC et al. (2007) Mechanical pain hypersensitivity after incisional surgery is enhanced in rats subjected to neonatal peripheral inflammation: effects of N-methyl-D-aspartate receptor antagonists. Anesthesiology 106: 1204–1212

    Article  CAS  PubMed  Google Scholar 

  153. Anand KJ et al. (1999) Long-term behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 66: 627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Miranda A et al. (2006) Neonatal nociceptive somatic stimulation differentially modifies the activity of spinal neurons in rats and results in altered somatic and visceral sensation. J Physiol 572: 775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Reynolds ML and Fitzgerald M (1995) Long–term sensory hyperinnervation following neonatal skin wounds. J Comp Neurol 358: 487–498

    Article  CAS  PubMed  Google Scholar 

  156. Moss A et al. (2005) Ephrin-A4 inhibits sensory neurite outgrowth and is regulated by neonatal skin wounding. Eur J Neurosci 22: 2413–2421

    Article  PubMed  Google Scholar 

  157. Al-Chaer ED et al. (2000) A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 119: 1276–1285

    Article  CAS  PubMed  Google Scholar 

  158. Winston J et al. (2007) The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 132: 615–627

    Article  CAS  PubMed  Google Scholar 

  159. Randich A et al. (2006) Neonatal urinary bladder inflammation produces adult bladder hypersensitivity. J Pain 7: 469–479

    Article  PubMed  Google Scholar 

  160. Spencer SJ et al. (2006) Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide. Brain Behav Immun 20: 325–330

    Article  CAS  PubMed  Google Scholar 

  161. Boisse L et al. (2005) Neonatal immune challenge alters nociception in the adult rat. Pain 119: 133–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge research funding from the Medical Research Council, the Wellcome Trust, and the International Association for the Study of Pain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fitzgerald.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, M., Walker, S. Infant pain management: a developmental neurobiological approach. Nat Rev Neurol 5, 35–50 (2009). https://doi.org/10.1038/ncpneuro0984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing