Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac biomarkers: a contemporary status report

A Corrigendum to this article was published on 01 May 2006

Abstract

The field of cardiac biomarkers has grown by leaps and bounds in the past two decades. In this review we try to summarize the explosion of emerging knowledge and address the roles of some of the biomarkers that have either proven or potential utility. We detail some of the markers of ischemia, hemodynamic markers of heart failure, inflammatory markers, and the novel and innovative approach of combining these for a multimarker strategy. At the end of this review we highlight some of the biomarker-guided approaches and strategies that might lead to better and more-effective care of patients.

Key Points

  • Blood tests are now available for several markers to be used as adjuncts in primary prevention and screening, and in diagnostic, prognostic and therapeutic strategies for cardiovascular disease

  • Biomarkers could provide noninvasive insight into the underlying causes and consequences of acute coronary syndromes to reduce myocardial injury by early diagnosis and treatment

  • Assessment of biomarkers has value and potential in the risk stratification of myocardial ischemia patients

  • The prognostic value of biomarkers can be increased by use of multimarker strategies, in which each biomarker provides insight into a different pathophysiologic axis

  • A role might exist for biomarkers in the targeting of therapy, but further prospective study is needed in a clinical setting

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiac markers classified according to the different pathologic processes they indicate.
Figure 2: Predictive value of cardiac troponin I concentrations at presentation for short-term mortality in patients with acute coronary syndromes.
Figure 3: Relationship between brain natriuretic protein concentrations by quartile and risk of mortality in patients with acute coronary syndromes.
Figure 4: Relationship of brain natriuretic peptide and diagnosis of acute decompensated heart failure, expressed as area under receiver-operating-characteristic curve.
Figure 5: Association between myelopyroxidase serum levels in different tertiles and cardiac event rate in patients with acute coronary syndromes short term and long term after onset.
Figure 6: Mortality risk at 30 days after onset of acute coronary syndromes, assessed by measurement of no, single and multiple cardiac biomarkers.
Figure 7: Possible routes of research into biomarker-guided, individualized management strategies.
Figure 8: Association of predischarge brain natriuretic peptide levels and risk of rehospitalization or death during 6-month follow-up.
Figure 9: Clinical relevance of achieved level of low-density lipoprotein cholesterol and C-reactive protein concentration after treatment with statins for recurrent myocardial infarction or death in long-term follow-up.
Figure 10: Association between adiponectin concentrations in different quintiles and risk of myocardial infarction in 532 men aged 4575 years during 6-year follow-up.

Similar content being viewed by others

References

  1. Braunwald E et al. (2002) ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction—summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). J Am Coll Cardiol 40: 1366–1374

    Article  Google Scholar 

  2. Alpert JS et al. (2000) Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36: 959–969

    Article  CAS  Google Scholar 

  3. Storrow AB and Gibler WB (2000) Chest pain centers: diagnosis of acute coronary syndromes. Ann Emerg Med 35: 449–461

    Article  CAS  Google Scholar 

  4. Morrow DA and Braunwald E (2003) Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy. Circulation 108: 250–252

    Article  Google Scholar 

  5. NACB Laboratory Medicine Practice Guidelines (LMPG) [http://www.nacb.org/lmpg/main.stm]

  6. Katus HA et al. (1991) Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 83: 902–912

    Article  CAS  Google Scholar 

  7. Adams JE III et al. (1994) Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med 330: 670–674

    Article  Google Scholar 

  8. Morrow DA et al. (2000) Cardiac troponin I for stratification of early outcomes and the efficacy of enoxaparin in unstable angina: a TIMI 11B substudy. J Am Coll Cardiol 36: 1812–1817

    Article  CAS  Google Scholar 

  9. Ohman EM et al. (1999) Risk stratification with a point-of-care cardiac troponin T test in acute myocardial infarction. Am J Cardiol 84: 1281–1286

    Article  CAS  Google Scholar 

  10. Heidenreich PA et al. (2001) The prognostic value of troponin in patients with non-ST elevation acute coronary syndromes: a meta-analysis. J Am Coll Cardiol 38: 478–485

    Article  CAS  Google Scholar 

  11. James SK et al. (2003) Troponin and C-reactive protein have different relations to subsequent mortality and myocardial infarction after acute coronary syndrome: a GUSTO-IV substudy. J Am Coll Cardiol 41: 916–924

    Article  CAS  Google Scholar 

  12. Morrow DA et al. (2000) Clinical efficacy of three assays for cardiac troponin I for risk stratification in acute coronary syndromes: a Thrombolysis In Myocardial Infarction (TIMI) 11B Substudy. Clin Chem 46: 453–460

    CAS  PubMed  Google Scholar 

  13. Kaul P et al. (2003) Troponin T and quantitative ST-segment depression offer complementary prognostic information in the risk stratification of acute coronary syndrome patients. J Am Coll Cardiol 41: 371–380

    Article  CAS  Google Scholar 

  14. Morrow DA et al. (2001) Ability of minor elevations of troponin I and T to identify patients with unstable angina and non-ST elevation myocardial infarction who benefit from an early invasive strategy: results from a prospective, randomized trial. JAMA 286: 2405–2412

    Article  CAS  Google Scholar 

  15. Venge P et al. (2002) Clinical performance of three cardiac troponin assays in patients with unstable coronary artery disease (a FRISC II substudy). Am J Cardiol 89: 1035–1041

    Article  CAS  Google Scholar 

  16. Morrow DA et al. (2003) Evaluation of the AccuTnI cardiac troponin I assay for risk assessment in acute coronary syndromes. Clin Chem 49: 1396–1398

    Article  CAS  Google Scholar 

  17. Kontos MC et al. (2004) Implication of different cardiac troponin I levels for clinical outcomes and prognosis of acute chest pain patients. J Am Coll Cardiol 43: 958–965

    Article  CAS  Google Scholar 

  18. Brogan GX Jr et al. (1994) Evaluation of a new rapid quantitative immunoassay for serum myoglobin versus CK-MB for ruling out acute myocardial infarction in the emergency department. Ann Emerg Med 24: 665–671

    Article  Google Scholar 

  19. Newby LK et al. (2001) Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation 103: 1832–1837

    Article  CAS  Google Scholar 

  20. Roy D et al. (2004) Ischemia Modified Albumin for the assessment of patients presenting to the emergency department with acute chest pain but normal or non-diagnostic 12-lead electrocardiograms and negative cardiac troponin T. Int J Cardiol 97: 297–301

    Article  Google Scholar 

  21. Bar-Or D et al. (2001) Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: a preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. Am Heart J 141: 985–991

    Article  CAS  Google Scholar 

  22. Christenson RH et al. (2001) Characteristics of an albumin cobalt binding test for assessment of acute coronary syndrome patients: a multicenter study. Clin Chem 47: 464–470

    CAS  PubMed  Google Scholar 

  23. de Lemos JA et al. (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362: 316–322

    Article  CAS  Google Scholar 

  24. Morrow DA et al. (2003) Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 41: 1264–1272.

    Article  CAS  Google Scholar 

  25. Mega JL et al. (2004) B-type natriuretic peptide at presentation and prognosis in patients with ST-segment elevation myocardial infarction: an ENTIRE-TIMI-23 substudy. J Am Coll Cardiol 44: 335–339

    Article  CAS  Google Scholar 

  26. de Lemos JA and Morrow DA (2002) Brain natriuretic peptide measurement in acute coronary syndromes: ready for clinical application? Circulation 106: 2868–2870

    Article  Google Scholar 

  27. Hama N et al. (1995) Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92: 1558–1564

    Article  CAS  Google Scholar 

  28. Marumoto K et al. (1995) Increased secretion of atrial and brain natriuretic peptides during acute myocardial ischaemia induced by dynamic exercise in patients with angina pectoris. Clin Sci (Lond) 88: 551–556

    Article  CAS  Google Scholar 

  29. Sabatine MS et al. (2004) Acute changes in circulating natriuretic peptide levels in relation to myocardial ischemia. Am Coll Cardiol 44: 1988–1995

    Article  CAS  Google Scholar 

  30. Tateishi J et al. (2000) Transient increase in plasma brain (B-type) natriuretic peptide after percutaneous transluminal coronary angioplasty. Clin Cardiol 23: 776–780

    Article  CAS  Google Scholar 

  31. Sadanandan S et al. Association of elevated B-type natriuretic peptide levels with angiographic findings among patients with unstable angina and non-ST-segment elevation myocardial infarction. J Am Coll Cardiol 44: 564–568

  32. Bassan R et al. (2005) B-type natriuretic peptide: a novel early blood marker of acute myocardial infarction in patients with chest pain and no ST-segment elevation. Eur Heart J 26: 234–240

    Article  CAS  Google Scholar 

  33. Arakawa N et al. (1994) Relationship between plasma level of brain natriuretic peptide and myocardial infarct size. Cardiology 85: 334–340

    Article  CAS  Google Scholar 

  34. de Lemos JA et al. (2001) The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med 345: 1014–1021

    Article  CAS  Google Scholar 

  35. Omland T et al. (2002) N-terminal pro-B-type natriuretic peptide and long-term mortality in acute coronary syndromes. Circulation 106: 2913–2918

    Article  CAS  Google Scholar 

  36. Talwar S et al. (2000) Profile of plasma N-terminal proBNP following acute myocardial infarction; correlation with left ventricular systolic dysfunction. Eur Heart J 21: 1514–1521

    Article  CAS  Google Scholar 

  37. Jernberg T et al. (2003) N-terminal pro-brain natriuretic peptide in relation to inflammation, myocardial necrosis, and the effect of an invasive strategy in unstable coronary artery disease. J Am Coll Cardiol 42: 1909–1916

    Article  CAS  Google Scholar 

  38. Lindahl B et al. (2005) Serial analyses of N-terminal pro-B-type natriuretic peptide in patients with non-ST-segment elevation acute coronary syndromes: a Fragmin and fast Revascularisation during In Stability in Coronary artery disease (FRISC)-II substudy. J Am Coll Cardiol 45: 533–541

    Article  CAS  Google Scholar 

  39. American Heart Association (2002) Heart Disease and Stroke Statistics —2003 Update. Dallas: American Heart Association

  40. Maisel AS et al. (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347: 161–167

    Article  CAS  Google Scholar 

  41. Wang TJ et al. (2004) Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med 350: 655–663

    Article  CAS  Google Scholar 

  42. Bhalla MA et al. (2004) Prognostic role of B-type natriuretic peptide levels in patients with type 2 diabetes mellitus. J Am Coll Cardiol 44: 1047–1052

    Article  CAS  Google Scholar 

  43. Kragelund C et al. (2005) N-terminal pro-B-type natriuretic peptide and long-term mortality in stable coronary heart disease. N Engl J Med 352: 666–675

    Article  CAS  Google Scholar 

  44. Mueller C et al. (2004) Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 350: 647–654

    Article  CAS  Google Scholar 

  45. Maisel AS et al. for the Breathing Not Properly Multinational Study Investigators (2002) Rapid Measurement of B-Type Natriuretic Peptide in the Emergency Diagnosis of Heart Failure. N Engl J Med 347: 161–167

    Article  CAS  Google Scholar 

  46. Maisel A et al. (2004) Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT): a multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J Am Coll Cardiol 44: 1328–1333

    Article  Google Scholar 

  47. Atisha D et al. (2004) A prospective study in search of an optimal BNP level to screen patients for cardiac dysfunction. Am Heart J 148: 518–523

    Article  CAS  Google Scholar 

  48. Heidenreich PA et al. (2004) Cost-effectiveness of screening with B-type natriuretic peptide to identify patients with reduced left ventricular ejection fraction. J Am Coll Cardiol 43: 1019–1026

    Article  CAS  Google Scholar 

  49. Libby P et al. (2002) Inflammation and atherosclerosis. Circulation 105: 1135–1143

    Article  CAS  Google Scholar 

  50. Pietila K et al. (1997) Comparison of peak serum C-reactive protein and hydroxybutyrate dehydrogenase levels in patients with acute myocardial infarction treated with alteplase and streptokinase. Am J Cardiol 80: 1075–1077

    Article  CAS  Google Scholar 

  51. Morrow DA et al. (1998) C-reactive protein is a potent predictor of mortality independently of and in combination with troponin T in acute coronary syndromes: a TIMI 11A substudy. J Am Coll Cardiol 31: 1460–1465

    Article  CAS  Google Scholar 

  52. Biasucci LM et al. (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94: 874–877

    Article  CAS  Google Scholar 

  53. Anzai T et al. (1997) C-reactive protein as a predictor of infarct expansion and cardiac rupture after a first Q-wave acute myocardial infarction. Circulation 96: 778–784

    Article  CAS  Google Scholar 

  54. Ferreiros ER et al. (1999) Independent prognostic value of elevated C-reactive protein in unstable angina. Circulation 100: 1958–1963

    Article  CAS  Google Scholar 

  55. Lindahl B et al. (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. N Engl J Med 343: 1139–1147

    Article  CAS  Google Scholar 

  56. James SK et al. (2003) Troponin and C-reactive protein have different relations to subsequent mortality and myocardial infarction after acute coronary syndrome: a GUSTO-IV substudy. J Am Coll Cardiol 41: 916–924

    Article  CAS  Google Scholar 

  57. Rebuzzi AG et al. (1998) Incremental prognostic value of serum levels of troponin T and C- reactive protein on admission in patients with unstable angina pectoris. Am J Cardiol 82: 715–719

    Article  CAS  Google Scholar 

  58. Lindmark E et al. (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286: 2107–2113

    Article  CAS  Google Scholar 

  59. Baldus S et al. (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108: 1440–1445

    Article  CAS  Google Scholar 

  60. Biasucci LM et al. (1999) Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 99: 2079–2084

    Article  CAS  Google Scholar 

  61. Heeschen C et al. (2003) Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 348: 1104–1111

    Article  CAS  Google Scholar 

  62. Sabatine MS et al. (2002) Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation 105: 1760–1763

    Article  CAS  Google Scholar 

  63. Bhalla V (2004) B-type natriuretic peptide: the level and the drug—partners in the diagnosis of congestive heart failure. Congest Heart Fail 10 (Suppl 1): 3–27

    Article  CAS  Google Scholar 

  64. Logeart D et al. (2004) Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol 43: 635–641

    Article  CAS  Google Scholar 

  65. Ridker PM et al. (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352: 20–28

    Article  CAS  Google Scholar 

  66. Pischon T et al. (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291: 1730–1737

    Article  CAS  Google Scholar 

  67. Heeschen C et al. (2004) Prognostic value of placental growth factor in patients with acute chest pain. JAMA 291: 435–441

    Article  CAS  Google Scholar 

  68. Varo N et al. (2003) Soluble CD40L: risk prediction after acute coronary syndromes. Circulation 108: 1049–1052

    Article  CAS  Google Scholar 

  69. de Lemos JA et al. (2003) Association between plasma concentrations of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation 107: 690–695

    Article  CAS  Google Scholar 

  70. Xu ZM et al. (2003) Atorvastatin reduces plasma MCP-1 in patients with acute coronary syndrome. Clin Chim Acta 338: 17–24

    Article  CAS  Google Scholar 

  71. Antman EM et al. (1996) Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 335: 1342–1349

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S Maisel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisel, A., Bhalla, V. & Braunwald, E. Cardiac biomarkers: a contemporary status report. Nat Rev Cardiol 3, 24–34 (2006). https://doi.org/10.1038/ncpcardio0405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing