Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Constitutional mechanisms of vulnerability and resilience to nicotine dependence

Abstract

The core nature of nicotine dependence is evident in wide variations in how individuals become and remain smokers. Individuals with pre-existing behavioral traits are more likely to develop nicotine dependence and experience difficulty when attempting to quit. Many molecular factors likely contribute to individual variations in the development of nicotine dependence and behavioral traits in complex manners. However, the identification of such molecules has been hampered by the phenotypic complexity of nicotine dependence and the complex ways molecules affect elements of nicotine dependence. We hypothesize that nicotine dependence is, in part, a result of interactions between nicotine and pre-existing behavioral traits. This perspective suggests that the identification of the molecular bases of such pre-existing behavioral traits will contribute to the development of effective methods for reducing smoking dependence and for helping smokers to quit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. World Health Organization. Tobacco: Deadly in any Form and Disguise. World Health Organization, WHO Press: Geneva, Switzerland, 2006.

  2. Centers for Disease Control and Prevention. Symptoms of substance dependence associated with use of cigarettes, alcohol, and illicit drugs—United Sates, 1991–1992. MMWR 1995; 44: 831–839.

    Google Scholar 

  3. Hughes J, Stead L, Lancaster T . Antidepressants for smoking cessation. Cochrane Database Syst Rev 2004; 4: CD000031.

    Google Scholar 

  4. Stead LF, Perera R, Bullen C, Mant D, Lancaster T . Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev 2008; 1: CD000146.

    Google Scholar 

  5. Rose JE . Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology (Berlin) 2006; 184: 274–285.

    Article  CAS  Google Scholar 

  6. Donny EC, Houtsmuller E, Stitzer ML . Smoking in the absence of nicotine: behavioral, subjective and physiological effects over 11 days. Addiction 2007; 102: 324–334.

    Article  PubMed  Google Scholar 

  7. Buchhalter AR, Acosta MC, Evans SE, Breland AB, Eissenberg T . Tobacco abstinence symptom suppression: the role played by the smoking-related stimuli that are delivered by denicotinized cigarettes. Addiction 2005; 100: 550–559.

    Article  PubMed  Google Scholar 

  8. Rohsenow DJ, Monti PM, Hutchison KE, Swift RM, MacKinnon SV, Sirota AD et al. High-dose transdermal nicotine and naltrexone: effects on nicotine withdrawal, urges, smoking, and effects of smoking. Exp Clin Psychopharmacol 2007; 15: 81–92.

    Article  CAS  PubMed  Google Scholar 

  9. Rollema H, Coe JW, Chambers LK, Hurst RS, Stahl SM, Williams KE . Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation. Trends Pharmacol Sci 2007; 28: 316–325.

    Article  CAS  PubMed  Google Scholar 

  10. Cahill K, Stead LF, Lancaster T . Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev 2008; 3: CD006103.

    Google Scholar 

  11. Harvey DM, Yasar S, Heishman SJ, Panlilio LV, Henningfield JE, Goldberg SR . Nicotine serves as an effective reinforcer of intravenous drug-taking behavior in human cigarette smokers. Psychopharmacology (Berlin) 2004; 175: 134–142.

    Article  CAS  Google Scholar 

  12. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO . The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict 1991; 86: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes JR, Helzer JE, Lindberg SA . Prevalence of DSM/ICD-defined nicotine dependence. Drug Alcohol Depend 2006; 85: 91–102.

    Article  PubMed  Google Scholar 

  14. Moolchan ET, Radzius A, Epstein DH, Uhl G, Gorelick DA, Cadet JL et al. The Fagerstrom test for nicotine dependence and the Diagnostic Interview Schedule: do they diagnose the same smokers? Addict Behav 2002; 27: 101–113.

    Article  PubMed  Google Scholar 

  15. Breslau N, Johnson EO . Predicting smoking cessation and major depression in nicotine-dependent smokers. Am J Public Health 2000; 90: 1122–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Piper ME, McCarthy DE, Bolt DM, Smith SS, Lerman C, Benowitz N et al. Assessing dimensions of nicotine dependence: an evaluation of the Nicotine Dependence Syndrome Scale (NDSS) and the Wisconsin Inventory of Smoking Dependence Motives (WISDM). Nicotine Tob Res 2008; 10: 1009–1020.

    Article  CAS  PubMed  Google Scholar 

  17. Tiffany ST, Conklin CA, Shiffman S, Clayton RR . What can dependence theories tell us about assessing the emergence of tobacco dependence? Addiction 2004; 99 (Suppl 1): 78–86.

    Article  PubMed  Google Scholar 

  18. Piper ME, Piasecki TM, Federman EB, Bolt DM, Smith SS, Fiore MC et al. A multiple motives approach to tobacco dependence: the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68). J Consul Clin Psychol 2004; 72: 139–154.

    Article  Google Scholar 

  19. Centers for Disease Control and Prevention. Cigarette Smoking Among Adults-United States, 2004. MMWR 2005; 54: 1121–1124.

    Google Scholar 

  20. Chassin L, Presson CC, Pitts SC, Sherman SJ . The natural history of cigarette smoking from adolescence to adulthood in a midwestern community sample: multiple trajectories and their psychosocial correlates. Health Psychol 2000; 19: 223–231.

    Article  CAS  PubMed  Google Scholar 

  21. Colder CR, Mehta P, Balanda K, Campbell RT, Mayhew KP, Stanton WR et al. Identifying trajectories of adolescent smoking: an application of latent growth mixture modeling. Health Psychol 2001; 20: 127–135.

    Article  CAS  PubMed  Google Scholar 

  22. Soldz S, Cui X . Pathways through adolescent smoking: a 7-year longitudinal grouping analysis. Health Psychol 2002; 21: 495–504.

    Article  PubMed  Google Scholar 

  23. White HR, Pandina RJ, Chen PH . Developmental trajectories of cigarette use from early adolescence into young adulthood. Drug Alcohol Depend 2002; 65: 167–178.

    Article  PubMed  Google Scholar 

  24. White HR, Nagin D, Replogle E, Stouthamer-Loeber M . Racial differences in trajectories of cigarette use. Drug Alcohol Depend 2004; 76: 219–227.

    Article  PubMed  Google Scholar 

  25. Audrain-McGovern J, Rodriguez D, Tercyak KP, Cuevas J, Rodgers K, Patterson F . Identifying and characterizing adolescent smoking trajectories. Cancer Epidemiol Biomarkers Prev 2004; 13: 2023–2034.

    PubMed  Google Scholar 

  26. Orlando M, Tucker JS, Ellickson PL, Klein DJ . Developmental trajectories of cigarette smoking and their correlates from early adolescence to young adulthood. J Consult Clin Psychol 2004; 72: 400–410.

    Article  PubMed  Google Scholar 

  27. Stanton WR, Flay BR, Colder CR, Mehta P . Identifying and predicting adolescent smokers’ developmental trajectories. Nicotine Tob Res 2004; 6: 843–852.

    Article  PubMed  Google Scholar 

  28. Vitaro F, Wanner B, Brendgen M, Gosselin C, Gendreau PL . Differential contribution of parents and friends to smoking trajectories during adolescence. Addict Behav 2004; 29: 831–835.

    Article  PubMed  Google Scholar 

  29. Abroms L, Simons-Morton B, Haynie DL, Chen R . Psychosocial predictors of smoking trajectories during middle and high school. Addiction 2005; 100: 852–861.

    Article  PubMed  Google Scholar 

  30. Karp I, O’loughlin J, Paradis G, Hanley J, Difranza J . Smoking trajectories of adolescent novice smokers in a longitudinal study of tobacco use. Ann Epidemiol 2005; 15: 445–452.

    Article  PubMed  Google Scholar 

  31. Brook JS, Pahl K, Ning Y . Peer and parental influences on longitudinal trajectories of smoking among African Americans and Puerto Ricans. Nicotine Tob Res 2006; 8: 639–651.

    Article  PubMed  Google Scholar 

  32. Bernat DH, Erickson DJ, Widome R, Perry CL, Forster JL . Adolescent smoking trajectories: results from a population-based cohort study. J Adolesc Health 2008; 43: 334–340.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brook DW, Brook JS, Zhang C, Whiteman M, Cohen P, Finch SJ . Developmental trajectories of cigarette smoking from adolescence to the early thirties: personality and behavioral risk factors. Nicotine Tob Res 2008; 10: 1283–1291.

    Article  PubMed  Google Scholar 

  34. Chassin L, Presson C, Seo DC, Sherman SJ, Macy J, Wirth RJ et al. Multiple trajectories of cigarette smoking and the intergenerational transmission of smoking: a multigenerational, longitudinal study of a midwestern community sample. Health Psychol 2008; 27: 819–828.

    Article  PubMed  Google Scholar 

  35. Lessov-Schlaggar CN, Hops H, Brigham J, Hudmon KS, Andrews JA, Tildesley E et al. Adolescent smoking trajectories and nicotine dependence. Nicotine Tob Res 2008; 10: 341–351.

    Article  PubMed  Google Scholar 

  36. Costello DM, Dierker LC, Jones BL, Rose JS . Trajectories of smoking from adolescence to early adulthood and their psychosocial risk factors. Health Psychol 2008; 27: 811–818.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kenford SL, Wetter DW, Welsch SK, Smith SS, Fiore MC, Baker TB . Progression of college-age cigarette samplers: what influences outcome. Addict Behav 2005; 30: 285–294.

    Article  PubMed  Google Scholar 

  38. Zhu SH, Sun J, Hawkins S, Pierce J, Cummins S . A population study of low-rate smokers: quitting history and instability over time. Health Psychol 2003; 22: 245–252.

    Article  PubMed  Google Scholar 

  39. Shiffman S, Paty JA, Kassel JD, Gnys M, Zettler-Segal M . Smoking behavior and smoking history of tobacco chippers. Exp Clin Psychopharmacol 1994; 2: 126–142.

    Article  Google Scholar 

  40. Shiffman S, Paty JA, Gnys M, Kassel JD, Elash C . Nicotine withdrawal in chippers and regular smokers: subjective and cognitive effects. Health Psychol 1995; 14: 301–309.

    Article  CAS  PubMed  Google Scholar 

  41. Davies GM, Willner P, Morgan MJ . Smoking-related cues elicit craving in tobacco ‘chippers’: a replication and validation of the two-factor structure of the Questionnaire of Smoking Urges. Psychopharmacology (Berlin) 2000; 152: 334–342.

    Article  CAS  Google Scholar 

  42. Sayette MA, Wertz JM, Martin CS, Cohn JF, Perrott MA, Hobel J . Effects of smoking opportunity on cue-elicited urge: a facial coding analysis. Exp Clin Psychopharmacol 2003; 11: 218–227.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shiffman S, Paty J . Smoking patterns and dependence: contrasting chippers and heavy smokers. J Abnorm Psychol 2006; 115: 509–523.

    Article  PubMed  Google Scholar 

  44. Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB . Smoking withdrawal dynamics: I. Abstinence distress in lapsers and abstainers. J Abnorm Psychol 2003; 112: 3–13.

    Article  PubMed  Google Scholar 

  45. McCarthy DE, Piasecki TM, Fiore MC, Baker TB . Life before and after quitting smoking: an electronic diary study. J Abnorm Psychol 2006; 115: 454–466.

    Article  PubMed  Google Scholar 

  46. Piasecki TM, Fiore MC, Baker TB . Profiles in discouragement: two studies of variability in the time course of smoking withdrawal symptoms. J Abnorm Psychol 1998; 107: 238–251.

    Article  CAS  PubMed  Google Scholar 

  47. Riggs NR, Chou CP, Li C, Pentz MA . Adolescent to emerging adulthood smoking trajectories: when do smoking trajectories diverge, and do they predict early adulthood nicotine dependence? Nicotine Tob Res 2007; 9: 1147–1154.

    Article  PubMed  Google Scholar 

  48. Lipkus IM, Barefoot JC, Williams RB, Siegler IC . Personality measures as predictors of smoking initiation and cessation in the UNC Alumni Heart Study. Health Psychol 1994; 13: 149–155.

    Article  CAS  PubMed  Google Scholar 

  49. Sher KJ, Bartholow BD, Wood MD . Personality and substance use disorders: a prospective study. J Consult Clin Psychol 2000; 68: 818–829.

    Article  CAS  PubMed  Google Scholar 

  50. Audrain-McGovern J, Rodriguez D, Patel V, Faith MS, Rodgers K, Cuevas J . How do psychological factors influence adolescent smoking progression? The evidence for indirect effects through tobacco advertising receptivity. Pediatrics 2006; 117: 1216–1225.

    Article  PubMed  Google Scholar 

  51. Masse LC, Tremblay RE . Behavior of boys in kindergarten and the onset of substance use during adolescence. Arch Gen Psychiatry 1997; 54: 62–68.

    Article  CAS  PubMed  Google Scholar 

  52. Griesler PC, Hu MC, Schaffran C, Kandel DB . Comorbidity of psychiatric disorders and nicotine dependence among adolescents: findings from a prospective, longitudinal study. J Am Acad Child Adolesc Psychiatry 2008; 47: 1340–1350.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Difranza JR, Savageau JA, Fletcher K, Pbert L, O’loughlin J, McNeill AD et al. Susceptibility to nicotine dependence: the development and assessment of nicotine dependence in Youth 2 study. Pediatrics 2007; 120: e974–e983.

    Article  PubMed  Google Scholar 

  54. Difranza JR, Savageau JA, Fletcher K, Pbert L, O’loughlin J, McNeill AD et al. Susceptibility to nicotine dependence: the development and assessment of nicotine dependence in youth 2 study. Pediatrics 2007; 120: e974–e983.

    Article  PubMed  Google Scholar 

  55. Hu MC, Muthen B, Schaffran C, Griesler PC, Kandel DB . Developmental trajectories of criteria of nicotine dependence in adolescence. Drug Alcohol Depend 2008; 98: 94–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cloninger CR . Neurogenetic adaptive mechanisms in alcoholism. Science 1987; 236: 410–416.

    Article  CAS  PubMed  Google Scholar 

  57. Zuckerman M, Kuhlman DM . Personality and risk-taking: common biosocial factors. J Pers 2000; 68: 999–1029.

    Article  CAS  PubMed  Google Scholar 

  58. Zuckerman M, Cloninger CR . Relationships between Cloninger's, Zuckerman's and Eysenck's dimensions of personality. Person Indiv Diff 1996; 21: 283–285.

    Article  Google Scholar 

  59. Galera C, Fombonne E, Chastang JF, Bouvard M . Childhood hyperactivity-inattention symptoms and smoking in adolescence. Drug Alcohol Depend 2005; 78: 101–108.

    Article  PubMed  Google Scholar 

  60. Kollins SH, McClernon FJ, Fuemmeler BF . Association between smoking and attention-deficit/hyperactivity disorder symptoms in a population-based sample of young adults. Arch Gen Psychiatry 2005; 62: 1142–1147.

    Article  PubMed  Google Scholar 

  61. Fergusson DM, Horwood LJ . Early conduct problems and later life opportunities. J Child Psychol Psychiatry 1998; 39: 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  62. Barkley RA, Fischer M, Edelbrock CS, Smallish L . The adolescent outcome of hyperactive children diagnosed by research criteria: I. An 8-year prospective follow-up study. J Am Acad Child Adolesc Psychiatry 1990; 29: 546–557.

    Article  CAS  PubMed  Google Scholar 

  63. Milberger S, Biederman J, Faraone SV, Chen L, Jones J . ADHD is associated with early initiation of cigarette smoking in children and adolescents. J Am Acad Child Adolesc Psychiatry 1997; 36: 37–44.

    Article  CAS  PubMed  Google Scholar 

  64. Lambert NM, Hartsough CS . Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J Learn Disabil 1998; 31: 533–544.

    Article  CAS  PubMed  Google Scholar 

  65. Molina BS, Pelham Jr WE . Childhood predictors of adolescent substance use in a longitudinal study of children with ADHD. J Abnorm Psychol 2003; 112: 497–507.

    Article  PubMed  Google Scholar 

  66. Rohde P, Kahler CW, Lewinsohn PM, Brown RA . Psychiatric disorders, familial factors, and cigarette smoking: II. Associations with progression to daily smoking. Nicotine Tob Res 2004; 6: 119–132.

    Article  PubMed  Google Scholar 

  67. Biederman J, Monuteaux MC, Mick E, Spencer T, Wilens TE, Silva JM et al. Young adult outcome of attention deficit hyperactivity disorder: a controlled 10-year follow-up study. Psychol Med 2006; 36: 167–179.

    Article  PubMed  Google Scholar 

  68. Lerman C, Audrain J, Tercyak K, Hawk Jr LW, Bush A, Crystal-Mansour S et al. Attention-deficit hyperactivity disorder (ADHD) symptoms and smoking patterns among participants in a smoking-cessation program. Nicotine Tob Res 2001; 3: 353–359.

    Article  CAS  PubMed  Google Scholar 

  69. Tercyak KP, Lerman C, Audrain J . Association of attention-deficit/hyperactivity disorder symptoms with levels of cigarette smoking in a community sample of adolescents. J Am Acad Child Adolesc Psychiatry 2002; 41: 799–805.

    Article  PubMed  Google Scholar 

  70. Rodriguez D, Tercyak KP, Audrain-McGovern J . Effects of inattention and hyperactivity/impulsivity symptoms on development of nicotine dependence from mid adolescence to young adulthood. J Pediatr Psychol 2008; 33: 563–575.

    Article  PubMed  Google Scholar 

  71. Gehricke JG, Whalen CK, Jamner LD, Wigal TL, Steinhoff K . The reinforcing effects of nicotine and stimulant medication in the everyday lives of adult smokers with ADHD: a preliminary examination. Nicotine Tob Res 2006; 8: 37–47.

    Article  CAS  PubMed  Google Scholar 

  72. Conners CK, Levin ED, Sparrow E, Hinton SC, Erhardt D, Meck WH et al. Nicotine and attention in adult attention deficit hyperactivity disorder (ADHD). Psychopharmacol Bull 1996; 32: 67–73.

    CAS  PubMed  Google Scholar 

  73. Potter AS, Newhouse PA . Effects of acute nicotine administration on behavioral inhibition in adolescents with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 2004; 176: 182–194.

    Article  CAS  Google Scholar 

  74. Potter AS, Newhouse PA . Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharmacol Biochem Behav 2008; 88: 407–417.

    Article  CAS  PubMed  Google Scholar 

  75. Levin ED, Conners CK, Sparrow E, Hinton SC, Erhardt D, Meck WH et al. Nicotine effects on adults with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 1996; 123: 55–63.

    Article  CAS  Google Scholar 

  76. Levin ED, Conners CK, Silva D, Canu W, March J . Effects of chronic nicotine and methylphenidate in adults with attention deficit/hyperactivity disorder. Exp Clin Psychopharmacol 2001; 9: 83–90.

    Article  CAS  PubMed  Google Scholar 

  77. Breslau N, Novak SP, Kessler RC . Psychiatric disorders and stages of smoking. Biol Psychiatry 2004; 55: 69–76.

    Article  PubMed  Google Scholar 

  78. Di Franza JR, Savageau JA, Fletcher K, Pbert L, O’loughlin J, McNeill AD et al. Susceptibility to nicotine dependence: the development and assessment of nicotine dependence in youth 2 study. Pediatrics 2007; 120: e974–e983.

    Article  Google Scholar 

  79. Kendler KS, Neale MC, MacLean CJ, Heath AC, Eaves LJ, Kessler RC . Smoking and major depression. A causal analysis. Arch Gen Psychiatry 1993; 50: 36–43.

    Article  CAS  PubMed  Google Scholar 

  80. Maes HH, Sullivan PF, Bulik CM, Neale MC, Prescott CA, Eaves LJ et al. A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence. Psychol Med 2004; 34: 1251–1261.

    Article  PubMed  Google Scholar 

  81. Li MD, Cheng R, Ma JZ, Swan GE . A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 2003; 98: 23–31.

    Article  PubMed  Google Scholar 

  82. Xian H, Scherrer JF, Madden PA, Lyons MJ, Tsuang M, True WR et al. The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit. Nicotine Tob Res 2003; 5: 245–254.

    Article  CAS  PubMed  Google Scholar 

  83. Madden PA, Heath AC, Pedersen NL, Kaprio J, Koskenvuo MJ, Martin NG . The genetics of smoking persistence in men and women: a multicultural study. Behav Genet 1999; 29: 423–431.

    Article  CAS  PubMed  Google Scholar 

  84. True WR, Heath AC, Scherrer JF, Waterman B, Goldberg J, Lin N et al. Genetic and environmental contributions to smoking. Addiction 1997; 92: 1277–1287.

    Article  CAS  PubMed  Google Scholar 

  85. Heath AC, Martin NG . Genetic models for the natural history of smoking: evidence for a genetic influence on smoking persistence. Addict Behav 1993; 18: 19–34.

    Article  CAS  PubMed  Google Scholar 

  86. Carmelli D, Swan GE, Robinette D, Fabsitz R . Genetic influence on smoking—a study of male twins. N Engl J Med 1992; 327: 829–833.

    Article  CAS  PubMed  Google Scholar 

  87. Broms U, Silventoinen K, Madden PA, Heath AC, Kaprio J . Genetic architecture of smoking behavior: a study of Finnish adult twins. Twin Res Hum Genet 2006; 9: 64–72.

    Article  PubMed  Google Scholar 

  88. Pergadia ML, Heath AC, Martin NG, Madden PA . Genetic analyses of DSM-IV nicotine withdrawal in adult twins. Psychol Med 2006; 36: 963–972.

    Article  PubMed  Google Scholar 

  89. Swan GE, Hops H, Wilhelmsen KC, Lessov-Schlaggar CN, Cheng LS, Hudmon KS et al. A genome-wide screen for nicotine dependence susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 354–360.

    Article  Google Scholar 

  90. Li MD, Payne TJ, Ma JZ, Lou XY, Zhang D, Dupont RT et al. A genomewide search finds major susceptibility loci for nicotine dependence on chromosome 10 in African Americans. Am J Hum Genet 2006; 79: 745–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li MD, Ma JZ, Payne TJ, Lou XY, Zhang D, Dupont RT et al. Genome-wide linkage scan for nicotine dependence in European Americans and its converging results with African Americans in the Mid-South Tobacco Family sample. Mol Psychiatry 2008; 13: 407–416.

    Article  CAS  PubMed  Google Scholar 

  92. Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 2007; 16: 24–35.

    Article  CAS  PubMed  Google Scholar 

  93. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE . Molecular genetics of nicotine dependence and abstinence: whole genome association using 520 000 SNPs. BMC Genet 2007; 8: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Uhl GR, Liu QR, Drgon T, Johnson C, Walther D, Rose JE et al. Molecular genetics of successful smoking cessation: convergent genome-wide association study results. Arch Gen Psychiatry 2008; 65: 683–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arinami T, Ishiguro H, Onaivi ES . Polymorphisms in genes involved in neurotransmission in relation to smoking. Eur J Pharmacol 2000; 410: 215–226.

    Article  CAS  PubMed  Google Scholar 

  96. Li MD, Ma JZ, Beuten J . Progress in searching for susceptibility loci and genes for smoking-related behaviour. Clin Genet 2004; 66: 382–392.

    Article  CAS  PubMed  Google Scholar 

  97. Berrettini WH, Lerman CE . Pharmacotherapy and pharmacogenetics of nicotine dependence. Am J Psychiatry 2005; 162: 1441–1451.

    Article  PubMed  Google Scholar 

  98. Schnoll RA, Johnson TA, Lerman C . Genetics and smoking behavior. Curr Psychiatry Rep 2007; 9: 349–357.

    Article  PubMed  Google Scholar 

  99. Lessov CN, Swan GE, Ring HZ, Khroyan TV, Lerman C . Genetics and drug use as a complex phenotype. Subst Use Misuse 2004; 39: 1515–1569.

    Article  PubMed  Google Scholar 

  100. Ebstein RP . The molecular genetic architecture of human personality: beyond self-report questionnaires. Mol Psychiatry 2006; 11: 427–445.

    Article  CAS  PubMed  Google Scholar 

  101. Lusher JM, Chandler C, Ball D . Dopamine D4 receptor gene (DRD4) is associated with Novelty Seeking (NS) and substance abuse: the saga continues. Mol Psychiatry 2001; 6: 497–499.

    Article  CAS  PubMed  Google Scholar 

  102. Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006; 11: 934–953.

    Article  CAS  PubMed  Google Scholar 

  103. Thapar A, Langley K, Fowler T, Rice F, Turic D, Whittinger N et al. Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2005; 62: 1275–1278.

    Article  CAS  PubMed  Google Scholar 

  104. Caspi A, Langley K, Milne B, Moffitt TE, O’Donovan M, Owen MJ et al. A replicated molecular genetic basis for subtyping antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2008; 65: 203–210.

    Article  PubMed  Google Scholar 

  105. Malmberg K, Wargelius HL, Lichtenstein P, Oreland L, Larsson JO . ADHD and disruptive behavior scores—associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents. BMC Psychiatry 2008; 8: 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Williamson PR, Gamble C, Altman DG, Hutton JL . Outcome selection bias in meta-analysis. Stat Methods Med Res 2005; 14: 515–524.

    Article  CAS  PubMed  Google Scholar 

  107. Herbst JH, Zonderman AB, McCrae RR, Costa Jr PT . Do the dimensions of the temperament and character inventory map a simple genetic architecture? Evidence from molecular genetics and factor analysis. Am J Psychiatry 2000; 157: 1285–1290.

    Article  CAS  PubMed  Google Scholar 

  108. Kliethermes CL, Crabbe JC . Genetic independence of mouse measures of some aspects of novelty seeking. Proc Natl Acad Sci USA 2006; 103: 5018–5023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu H, Lee M, Agatsuma S, Hiroi N . Pleiotropic impact of constitutive fosB inactivation on nicotine-induced behavioral alterations and stress-related traits in mice. Hum Mol Genet 2007; 16: 820–836.

    Article  CAS  PubMed  Google Scholar 

  110. Gourlay SG, Benowitz NL . Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clin Pharmacol Ther 1997; 62: 453–463.

    Article  CAS  PubMed  Google Scholar 

  111. Benowitz NL . Nicotine addiction. Prim Care 1999; 26: 611–631.

    Article  CAS  PubMed  Google Scholar 

  112. Rose JE, Behm FM, Westman EC, Coleman RE . Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend 1999; 56: 99–107.

    Article  CAS  PubMed  Google Scholar 

  113. White NM, Hiroi N . Amphetamine cue preference and the neurobiology of drug-seeking. Semin Neurosci 1993; 5: 329–336.

    Article  CAS  Google Scholar 

  114. Bardo MT, Rowlett JK, Harris MJ . Conditioned place preference using opiate and stimulant drugs: a meta-analysis. Neurosci Biobehav Rev 1995; 19: 39–51.

    Article  CAS  PubMed  Google Scholar 

  115. Bardo MT, Bevins RA . Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology (Berl) 2000; 153: 31–43.

    Article  CAS  Google Scholar 

  116. Droungas A, Ehrman RN, Childress AR, O’Brien CP . Effect of smoking cues and cigarette availability on craving and smoking behavior. Addict Behav 1995; 20: 657–673.

    Article  CAS  PubMed  Google Scholar 

  117. Shiffman S, Paty JA, Gnys M, Kassel JA, Hickcox M . First lapses to smoking: within-subjects analysis of real-time reports. J Consult Clin Psychol 1996; 64: 366–379.

    Article  CAS  PubMed  Google Scholar 

  118. Hogarth L, Duka T . Human nicotine conditioning requires explicit contingency knowledge: is addictive behaviour cognitively mediated? Psychopharmacology (Berl) 2006; 184: 553–566.

    Article  CAS  Google Scholar 

  119. Lazev AB, Herzog TA, Brandon TH . Classical conditions of environmental cues to cigarette smoking. Exp Clin Psychopharmacol 1999; 7: 56–63.

    Article  CAS  PubMed  Google Scholar 

  120. Shiffman S, Gnys M, Richards TJ, Paty JA, Hickcox M, Kassel JD . Temptations to smoke after quitting: a comparison of lapsers and maintainers. Health Psychol 1996; 15: 455–461.

    Article  CAS  PubMed  Google Scholar 

  121. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text revision (DSM-IV-TR). Washington, DC, American Psychiatric Association, 2000.

  122. Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW . Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatry 1991; 48: 52–59.

    Article  CAS  PubMed  Google Scholar 

  123. Piasecki TM, Niaura R, Shadel WG, Abrams D, Goldstein M, Fiore MC et al. Smoking withdrawal dynamics in unaided quitters. J Abnorm Psychol 2000; 109: 74–86.

    Article  CAS  PubMed  Google Scholar 

  124. Jackson KJ, Martin BR, Changeux JP, Damaj MI . Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther 2008; 325: 302–312.

    Article  CAS  PubMed  Google Scholar 

  125. Merritt LL, Martin BR, Walters C, Lichtman AH, Damaj MI . The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther 2008; 326: 483–492.

    Article  CAS  PubMed  Google Scholar 

  126. Flint J, Valdar W, Shifman S, Mott R . Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 2005; 6: 271–286.

    Article  CAS  PubMed  Google Scholar 

  127. Matsumoto M, Straub RE, Marenco S, Nicodemus KK, Matsumoto S, Fujikawa A et al. The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Natl Acad Sci USA 2008; 105: 6133–6138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 2008; 28: 8709–8723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lai WS, Xu B, Westphal KG, Paterlini M, Olivier B, Pavlidis P et al. Akt1 deficiency affects neuronal morphology and predisposes to abnormalities in prefrontal cortex functioning. Proc Natl Acad Sci USA 2006; 103: 16906–16911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mickey BJ, Ducci F, Hodgkinson CA, Langenecker SA, Goldman D, Zubieta JK . Monoamine oxidase A genotype predicts human serotonin 1A receptor availability in vivo. J Neurosci 2008; 28: 11354–11359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berrendero F, Mendizabal V, Robledo P, Galeote L, Bilkei-Gorzo A, Zimmer A et al. Nicotine-induced antinociception, rewarding effects, and physical dependence are decreased in mice lacking the preproenkephalin gene. J Neurosci 2005; 25: 1103–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Berrendero F, Kieffer BL, Maldonado R . Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci 2002; 22: 10935–10940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Castane A, Valjent E, Ledent C, Parmentier M, Maldonado R, Valverde O . Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 2002; 43: 857–867.

    Article  CAS  PubMed  Google Scholar 

  134. Castane A, Soria G, Ledent C, Maldonado R, Valverde O . Attenuation of nicotine-induced rewarding effects in A(2A) knockout mice. Neuropharmacology 2006; 51: 631–640.

    Article  CAS  PubMed  Google Scholar 

  135. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173–177.

    Article  CAS  PubMed  Google Scholar 

  136. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C et al. Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 2004; 306: 1029–1032.

    Article  CAS  PubMed  Google Scholar 

  137. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 2005; 436: 103–107.

    Article  CAS  PubMed  Google Scholar 

  138. Hiroi N, Agatsuma S . Genetic susceptibility to substance dependence. Mol Psychiatry 2005; 10: 336–344.

    Article  CAS  PubMed  Google Scholar 

  139. Chao J, Nestler EJ . Molecular neurobiology of drug addiction. Annu Rev Med 2004; 55: 113–132.

    Article  CAS  PubMed  Google Scholar 

  140. Hiroi N, Marek GJ, Brown JR, Ye H, Saudou F, Vaidya VA et al. Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures. J Neurosci 1998; 18: 6952–6962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Perrotti LI, Hadeishi Y, Ulery PG, Barrot M, Monteggia L, Duman RS et al. Induction of delta FosB in reward-related brain structures after chronic stress. J Neurosci 2004; 24: 10594–10602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Carlezon Jr WA, Duman RS, Nestler EJ . The many faces of CREB. Trends Neurosci 2005; 28: 436–445.

    Article  CAS  PubMed  Google Scholar 

  143. Walters CL, Cleck JN, Kuo YC, Blendy JA . Mu-opioid receptor and CREB activation are required for nicotine reward. Neuron 2005; 46: 933–943.

    Article  CAS  PubMed  Google Scholar 

  144. Ray R, Jepson C, Wileyto P, Patterson F, Strasser AA, Rukstalis M et al. CREB1 haplotypes and the relative reinforcing value of nicotine. Mol Psychiatry 2007; 12: 615–617.

    Article  CAS  PubMed  Google Scholar 

  145. Edelstein SB, Castiglione CM, Breakfield XO . Monoamine oxidase activity in normal and Lesch-Nyhan fibroblasts. J Neurochem 1978; 31: 1247–1254.

    Article  CAS  PubMed  Google Scholar 

  146. Hotamisligil GS, Breakefield XO . Human monoamine oxidase A gene determines levels of enzyme activity. Am J Hum Genet 1991; 49: 383–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tivol EA, Shalish C, Schuback DE, Hsu YP, Breakefield XO . Mutational analysis of the human MAOA gene. Am J Med Genet 1996; 67: 92–97.

    Article  CAS  PubMed  Google Scholar 

  148. Schuback DE, Mulligan EL, Sims KB, Tivol EA, Greenberg BD, Chang SF et al. Screen for MAOA mutations in target human groups. Am J Med Genet 1999; 88: 25–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Balciuniene J, Emilsson L, Oreland L, Pettersson U, Jazin E . Investigation of the functional effect of monoamine oxidase polymorphisms in human brain. Hum Genet 2002; 110: 1–7.

    Article  CAS  PubMed  Google Scholar 

  150. Castro Costa MR, Edelstein SB, Castiglione CM, Chao H, Breakefield XO . Properties of monoamine oxidase in control and Lesch-Nyhan fibroblasts. Biochem Genet 1980; 18: 577–590.

    Article  CAS  PubMed  Google Scholar 

  151. Sabol SZ, Hu S, Hamer D . A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103: 273–279.

    Article  CAS  PubMed  Google Scholar 

  152. Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, DiBella D et al. Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 1999; 8: 621–624.

    Article  CAS  PubMed  Google Scholar 

  153. Denney RM, Koch H, Craig IW . Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet 1999; 105: 542–551.

    CAS  PubMed  Google Scholar 

  154. Fowler JS, Alia-Klein N, Kriplani A, Logan J, Williams B, Zhu W et al. Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects. Biol Psychiatry 2007; 62: 355–358.

    Article  CAS  PubMed  Google Scholar 

  155. McKinney EF, Walton RT, Yudkin P, Fuller A, Haldar NA, Mant D et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers. Pharmacogenetics 2000; 10: 483–491.

    Article  CAS  PubMed  Google Scholar 

  156. Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R et al. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. Pharmacogenetics 2003; 13: 73–79.

    Article  CAS  PubMed  Google Scholar 

  157. Jin Y, Chen D, Hu Y, Guo S, Sun H, Lu A et al. Association between monoamine oxidase gene polymorphisms and smoking behaviour in Chinese males. Int J Neuropsychopharmacol 2005; 9: 557–564.

    Article  PubMed  CAS  Google Scholar 

  158. Johnstone EC, Clark TG, Griffiths SE, Murphy MF, Walton RT . Polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers: seeking confirmation of the association in a follow-up study. Pharmacogenetics 2002; 12: 585–587.

    Article  PubMed  Google Scholar 

  159. Huang S, Cook DG, Hinks LJ, Chen XH, Ye S, Gilg JA et al. CYP2A6, MAOA, DBH, DRD4, and 5HT2A genotypes, smoking behaviour and cotinine levels in 1518 UK adolescents. Pharmacogenet Genomics 2005; 15: 839–850.

    Article  CAS  PubMed  Google Scholar 

  160. Agatsuma S, Lee M, Zhu H, Chen K, Shih JC, Seif I et al. Monoamine oxidase A knockout mice exhibit impaired nicotine preference but normal responses to novel stimuli. Hum Mol Genet 2006; 15: 2721–2731.

    Article  CAS  PubMed  Google Scholar 

  161. Lee M, Chen K, Shih JC, Hiroi N . MAO-B knockout mice exhibit deficient habituation of locomotor activity but normal nicotine intake. Genes Brain Behav 2004; 3: 216–227.

    Article  CAS  PubMed  Google Scholar 

  162. Shih JC, Chen K, Ridd MJ . Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 1999; 22: 197–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Carr LA, Basham JK . Effects of tobacco smoke constituents on MPTP-induced toxicity and monoamine oxidase activity in the mouse brain. Life Sci 1991; 48: 1173–1177.

    Article  CAS  PubMed  Google Scholar 

  164. Khalil AA, Steyn S, Castagnoli Jr N . Isolation and characterization of a monoamine oxidase inhibitor from tobacco leaves. Chem Res Toxicol 2000; 13: 31–35.

    Article  CAS  PubMed  Google Scholar 

  165. Hauptmann N, Shih JC . 2-Naphthylamine, a compound found in cigarette smoke, decreases both monoamine oxidase A and B catalytic activity. Life Sci 2001; 68: 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  166. Herraiz T, Chaparro C . Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 2005; 326: 378–386.

    Article  CAS  PubMed  Google Scholar 

  167. Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 1996; 93: 14065–14069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M et al. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci 2005; 25: 8593–8600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Villegier AS, Salomon L, Granon S, Changeux JP, Belluzzi JD, Leslie FM et al. Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology 2006; 31: 1704–1713.

    Article  CAS  PubMed  Google Scholar 

  170. Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M et al. Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur J Neurosci 2006; 24: 3532–3540.

    Article  PubMed  Google Scholar 

  171. Berlin I, Said S, Spreux-Varoquaux O, Launay JM, Olivares R, Millet V et al. A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther 1995; 58: 444–452.

    Article  CAS  PubMed  Google Scholar 

  172. Houtsmuller EJ, Thornton JA, Stitzer ML . Effects of selegiline (L-deprenyl) during smoking and short-term abstinence. Psychopharmacology (Berl) 2002; 163: 213–220.

    Article  CAS  Google Scholar 

  173. George TP, Vessicchio JC, Termine A, Jatlow PI, Kosten TR, O’Malley SS . A preliminary placebo-controlled trial of selegiline hydrochloride for smoking cessation. Biol Psychiatry 2003; 53: 136–143.

    Article  CAS  PubMed  Google Scholar 

  174. Biberman R, Neumann R, Katzir I, Gerber Y . A randomized controlled trial of oral selegiline plus nicotine skin patch compared with placebo plus nicotine skin patch for smoking cessation. Addiction 2003; 98: 1403–1407.

    Article  CAS  PubMed  Google Scholar 

  175. Popova NK, Vishnivetskaya GB, Ivanova EA, Skrinskaya JA, Seif I . Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline. Pharmacol Biochem Behav 2000; 67: 719–727.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang W, Kilicarslan T, Tyndale RF, Sellers EM . Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab Dispos 2001; 29: 897–902.

    CAS  PubMed  Google Scholar 

  177. Azzaro AJ, Demarest KT . Inhibitory effects of type A and type B monoamine oxidase inhibitors on synaptosomal accumulation of [3H]dopamine: a reflection of antidepressant potency. Biochem Pharmacol 1982; 31: 2195–2197.

    Article  CAS  PubMed  Google Scholar 

  178. Lai JC, Leung TK, Guest JF, Lim L, Davison AN . The monoamine oxidase inhibitors clorgyline and L-deprenyl also affect the uptake of dopamine, noradrenaline and serotonin by rat brain synaptosomal preparations. Biochem Pharmacol 1980; 29: 2763–2767.

    Article  CAS  PubMed  Google Scholar 

  179. Moron JA, Perez V, Fernandez-Alvarez E, Marco JL, Unzeta M . ‘In vitro’ effect of some 5-hydroxy-indolalkylamine derivatives on monoamine uptake system. J Neural Transm Suppl 1998; 52: 343–349.

    Article  CAS  PubMed  Google Scholar 

  180. Tekes K, Magyar K . Effect of MAO inhibitors on the high-affinity reuptake of biogenic amines in rat subcortical regions. Neurobiology (Bp) 2000; 8: 257–264.

    CAS  Google Scholar 

  181. Janhunen S, Mielikainen P, Paldanius P, Tuominen RK, Ahtee L, Kaakkola S . The effect of nicotine in combination with various dopaminergic drugs on nigrostriatal dopamine in rats. Naunyn Schmiedebergs Arch Pharmacol 2005; 371: 480–491.

    Article  CAS  PubMed  Google Scholar 

  182. Itzhak Y, Kassim CO . Clorgyline displays high affinity for sigma binding sites in C57BL/6 mouse brain. Eur J Pharmacol 1990; 176: 107–108.

    Article  CAS  PubMed  Google Scholar 

  183. Itzhak Y, Stein I, Zhang SH, Kassim CO, Cristante D . Binding of sigma-ligands to C57BL/6 mouse brain membranes: effects of monoamine oxidase inhibitors and subcellular distribution studies suggest the existence of sigma-receptor subtypes. J Pharmacol Exp Ther 1991; 257: 141–148.

    CAS  PubMed  Google Scholar 

  184. Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V . Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 1998; 70: 922–931.

    Article  CAS  PubMed  Google Scholar 

  185. Horan B, Gardner EL, Dewey SL, Brodie JD, Ashby Jr CR . The selective sigma(1) receptor agonist, 1-(3,4-dimethoxyphenethyl)-4-(phenylpropyl)piperazine (SA4503), blocks the acquisition of the conditioned place preference response to (−)-nicotine in rats. Eur J Pharmacol 2001; 426: R1–R2.

    Article  CAS  PubMed  Google Scholar 

  186. Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M . Genetically determined differences in learning from errors. Science 2007; 318: 1642–1645.

    Article  CAS  PubMed  Google Scholar 

  187. Hughes JR, Stead LF, Lancaster T . Antidepressants for smoking cessation. Cochrane Database Syst Rev 2007; 1: CD000031.

    Google Scholar 

  188. Hyman SE, Malenka RC, Nestler EJ . Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29: 565–598.

    Article  CAS  PubMed  Google Scholar 

  189. Brunzell DH, Russell DS, Picciotto MR . In vivo nicotine treatment regulates mesocorticolimbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 2003; 84: 1431–1441.

    Article  CAS  PubMed  Google Scholar 

  190. Steiner RC, Heath CJ, Picciotto MR . Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII. J Neurochem 2007; 103: 666–678.

    Article  CAS  PubMed  Google Scholar 

  191. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Laane K et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007; 315: 1267–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kendler KS, Thornton LM, Pedersen NL . Tobacco consumption in Swedish twins reared apart and reared together. Arch Gen Psychiatry 2000; 57: 886–892.

    Article  CAS  PubMed  Google Scholar 

  193. Erblich J, Lerman C, Self DW, Diaz GA, Bovbjerg DH . Effects of dopamine D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced cigarette craving among African-American smokers. Mol Psychiatry 2005; 10: 407–414.

    Article  CAS  PubMed  Google Scholar 

  194. Horan B, Smith M, Gardner EL, Lepore M, Ashby Jr CR . Nicotine produces conditioned place preference in Lewis, but not Fischer 344 rats. Synapse 1997; 26: 93–94.

    Article  CAS  PubMed  Google Scholar 

  195. Haile CN, Hiroi N, Nestler EJ, Kosten TA . Differential behavioral responses to cocaine are associated with dynamics of mesolimbic dopamine proteins in Lewis and Fischer 344 rats. Synapse 2001; 41: 179–190.

    Article  CAS  PubMed  Google Scholar 

  196. Brower VG, Fu Y, Matta SG, Sharp BM . Rat strain differences in nicotine self-administration using an unlimited access paradigm. Brain Res 2002; 930: 12–20.

    Article  CAS  PubMed  Google Scholar 

  197. Piazza PV, Le Moal ML . Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 1996; 36: 359–378.

    Article  CAS  PubMed  Google Scholar 

  198. Kreek MJ, Nielsen DA, Butelman ER, LaForge KS . Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 2005; 8: 1450–1457.

    Article  CAS  PubMed  Google Scholar 

  199. Paulus MP . Decision-making dysfunctions in psychiatry—altered homeostatic processing? Science 2007; 318: 602–606.

    Article  CAS  PubMed  Google Scholar 

  200. Goldman D, Oroszi G, Ducci F . The genetics of addictions: uncovering the genes. Nat Rev Genet 2005; 6: 521–532.

    Article  CAS  PubMed  Google Scholar 

  201. Hiroi N, Brown JR, Haile CN, Ye H, Greenberg ME, Nestler EJ . FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. Proc Natl Acad Sci USA 1997; 94: 10397–10402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Walters CL, Blendy JA . Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J Neurosci 2001; 21: 9438–9444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of T Klein, who inspired the first author’s research direction. We thank Drs TB Baker and ME Piper for sharing unpublished data and Drs Justin Cho and Soh Agatsuma for their critical comments on an early draft of this article. The preparation of this article was supported by Grants R01 DA013232 and R01 DA024330 from the National Institute on Drug Abuse (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Drug Abuse or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Hiroi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiroi, N., Scott, D. Constitutional mechanisms of vulnerability and resilience to nicotine dependence. Mol Psychiatry 14, 653–667 (2009). https://doi.org/10.1038/mp.2009.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.16

Keywords

This article is cited by

Search

Quick links