Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

In focus: MLL-rearranged leukemia

Abstract

The molecular mechanisms underlying oncogenesis in leukemias associated with rearrangement of the Mixed Lineage Leukemia (MLL) gene have received a considerable amount of attention over the last two decades. In this review we will focus on recent studies, published over the past year, that reveal new insights into the multi-protein complexes formed by MLL and MLL fusion proteins, the role of epigenetic deregulation in MLL fusion function, downstream transcriptional target genes, the importance of the leukemia cell of origin, the role played by microRNAs, cooperating mutations and the implications that recent research has for the therapy of MLL-rearranged leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R 3rd, Patel Y, Harden A et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 1991; 88: 10735–10739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cimino G, Moir DT, Canaani O, Williams K, Crist WM, Katzav S et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13) chromosome translocations. Cancer Res 1991; 51: 6712–6714.

    CAS  PubMed  Google Scholar 

  3. Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ . Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995; 378: 505–508.

    Article  CAS  PubMed  Google Scholar 

  4. Yano T, Nakamura T, Blechman J, Sorio C, Dang CV, Geiger B et al. Nuclear punctate distribution of ALL-1 is conferred by distinct elements at the N terminus of the protein. Proc Natl Acad Sci USA 1997; 94: 7286–7291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gould A . Functions of mammalian polycomb group and trithorax group related genes. Curr Opin Genet Dev 1997; 7: 488–494.

    Article  CAS  PubMed  Google Scholar 

  6. Tkachuk DC, Kohler S, Cleary ML . Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700.

    Article  CAS  PubMed  Google Scholar 

  7. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708.

    Article  CAS  PubMed  Google Scholar 

  8. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood 2007; 110: 4445–4454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mueller D, Garcia-Cuellar MP, Bach C, Buhl S, Maethner E, Slany RK . Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol 2009; 7: e1000249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML . A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 2010; 17: 198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin C, Smith ER, Takahashi H, Lai KC, Martin-Brown S, Florens L et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010; 37: 429–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slany RK . The molecular biology of mixed lineage leukemia. Haematologica 2009; 94: 984–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohan M, Lin C, Guest E, Shilatifard A . Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 2010; 10: 721–728.

    Article  CAS  PubMed  Google Scholar 

  14. Smith E, Lin C, Shilatifard A . The super elongation complex (SEC) and MLL in development and disease. Genes Dev 2011; 25: 661–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004; 24: 5639–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102: 749–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yokoyama A, Cleary ML . Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008; 14: 36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML . The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 2005; 123: 207–218.

    Article  CAS  PubMed  Google Scholar 

  19. Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK, Hess JL . Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res 2007; 67: 7275–7283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang J, Gurung B, Wan B, Matkar S, Veniaminova NA, Wan K et al. The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 2012; 482: 542–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mereau H, De Rijck J, Cermakova K, Kutz A, Juge S, Demeulemeester J et al. Impairing MLL-fusion gene mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75). Leukemia 2013; e-pub ahead of print 15 January 2013; doi:10.1038/leu.2013.10.

    Article  PubMed  CAS  Google Scholar 

  22. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    Article  CAS  PubMed  Google Scholar 

  25. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang MJ, Wu H, Achille NJ, Reisenauer MR, Chou CW, Zeleznik-Le NJ et al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res 2010; 70: 10234–10242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jo SY, Granowicz EM, Maillard I, Thomas D, Hess JL . Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 2011; 117: 4759–4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen AT, Taranova O, He J, Zhang Y . DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 2011; 117: 6912–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK . The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human polycomb 3. Oncogene 2001; 20: 411–419.

    Article  CAS  PubMed  Google Scholar 

  31. Hemenway CS, de Erkenez AC, Gould GC . The polycomb protein MPc3 interacts with AF9, an MLL fusion partner in t(9;11)(p22;q23) acute leukemias. Oncogene 2001; 20: 3798–3805.

    Article  CAS  PubMed  Google Scholar 

  32. Tan J, Jones M, Koseki H, Nakayama M, Muntean AG, Maillard I et al. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell 2011; 20: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen L, Deshpande AJ, Banka D, Bernt KM, Dias S, Buske C et al. Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 2012; e-pub ahead of print 9 November 2012; doi:10.1038/leu.2012.327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D et al. Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 2013; 121: 2533–2541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 2012; 21: 473–487.

    Article  CAS  PubMed  Google Scholar 

  36. Morey L, Helin K . Polycomb group protein-mediated repression of transcription. Trends Biochem Sci 2010; 35: 323–332.

    Article  CAS  PubMed  Google Scholar 

  37. Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L et al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proc Natl Acad Sci USA 2012; 109: 5028–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanaka S, Miyagi S, Sashida G, Chiba T, Yuan J, Mochizuki-Kashio M et al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  39. Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C et al. The polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. Oncogene 2012; 32: 930–938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Somervaille TC, Cleary ML . Grist for the MLL: how do MLL oncogenic fusion proteins generate leukemia stem cells? Int J Hematol 2010; 91: 735–741.

    Article  PubMed  Google Scholar 

  41. Walf-Vorderwulbecke V, de Boer J, Horton SJ, van Amerongen R, Proost N, Berns A et al. Frat2 mediates the oncogenic activation of Rac by MLL fusions. Blood 2012; 120: 4819–4828.

    Article  CAS  PubMed  Google Scholar 

  42. van Amerongen R, Nawijn MC, Lambooij JP, Proost N, Jonkers J, Berns A . Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways. Oncogene 2010; 29: 93–104.

    Article  CAS  PubMed  Google Scholar 

  43. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A et al. Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 2011; 118: 5235–5245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D et al. Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606–618.

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML . Glycogen synthase kinase 3 in MLL leukemia maintenance and targeted therapy. Nature 2008; 455: 1205–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Osaki H, Walf-Vorderwulbecke V, Mangolini M, Zhao L, Horton SJ, Morrone G et al. The AAA(+) ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013; e-pub ahead of print 13 February 2013; doi:10.1038/leu.2012.42.

    Article  CAS  PubMed  Google Scholar 

  49. Grigoletto A, Lestienne P, Rosenbaum J . The multifaceted proteins reptin and pontin as major players in cancer. Biochim Biophys Acta 2011; 1815: 147–157.

    CAS  PubMed  Google Scholar 

  50. Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3: 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 2010; 115: 3570–3579.

    Article  CAS  PubMed  Google Scholar 

  52. Emerenciano M, Kowarz E, Karl K, de Almeida Lopes B, Scholz B, Bracharz S et al. Functional analysis of the two reciprocal fusion genes MLL-NEBL and NEBL-MLL reveal their oncogenic potential. Cancer Lett 2013; 332: 30–34.

    Article  CAS  PubMed  Google Scholar 

  53. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    Article  PubMed  CAS  Google Scholar 

  54. Groschel S, Lugthart S, Schlenk RF, Valk PJ, Eiwen K, Goudswaard C et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J Clin Oncol 2010; 28: 2101–2107.

    Article  PubMed  CAS  Google Scholar 

  55. Groschel S, Schlenk RF, Engelmann J, Rockova V, Teleanu V, Kuhn MW et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol 2013; 31: 95–103.

    Article  PubMed  Google Scholar 

  56. Bindels EM, Havermans M, Lugthart S, Erpelinck C, Wocjtowicz E, Krivtsov AV et al. EVI1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs. Blood 2012; 119: 5838–5849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arai S, Yoshimi A, Shimabe M, Ichikawa M, Nakagawa M, Imai Y et al. Evi-1 is a transcriptional target of mixed-lineage leukemia oncoproteins in hematopoietic stem cells. Blood 2011; 117: 6304–6314.

    Article  CAS  PubMed  Google Scholar 

  58. Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJ et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 2012; e-pub ahead of print 13 December 2012; doi:10.1038/leu.2012.363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Horton SJ, Jaques J, Woolthuis C, van Dijk J, Mesuraca M, Huls G et al. MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny. Leukemia 2012; e-pub ahead of print 26 November 2012; doi:10.1038/leu.2012.343.

    Article  PubMed  CAS  Google Scholar 

  60. Chen J, Odenike O, Rowley JD . Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 2011; 96: 703–711.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li Z, Huang H, Chen P, He M, Li Y, Arnovitz S et al. miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumor suppressor in MLL-rearranged leukaemia. Nat Commun 2012; 3: 688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nishi M, Eguchi-Ishimae M, Wu Z, Gao W, Iwabuki H, Kawakami S et al. Suppression of the let-7b microRNA pathway by DNA hypermethylation in infant acute lymphoblastic leukemia with MLL gene rearrangements. Leukemia 2012; 27: 389–397.

    Article  PubMed  CAS  Google Scholar 

  66. Jiang X, Huang H, Li Z, He C, Li Y, Chen P et al. MiR-495 is a tumor-suppressor microRNA down-regulated in MLL-rearranged leukemia. Proc Natl Acad Sci USA 2012; 109: 19397–19402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang X, Huang H, Li Z, Li Y, Wang X, Gurbuxani S et al. Blockade of miR-150 maturation by MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell 2012; 22: 524–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers MD et al. An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model. Blood 2012; 119: 4512–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell 2012; 21: 517–531.

    Article  CAS  PubMed  Google Scholar 

  70. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jenkins CR, Shevchuk OO, Giambra V, Lam SH, Carboni JM, Gottardis MM et al. IGF signaling contributes to malignant transformation of hematopoietic progenitors by the MLL-AF9 oncoprotein. Exp Hematol 2012; 40: 715–723, e716.

    Article  CAS  PubMed  Google Scholar 

  72. Zorko NA, Bernot KM, Whitman SP, Siebenaler RF, Ahmed EH, Marcucci GG et al. Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 2012; 120: 1130–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spijkers-Hagelstein JA, Schneider P, Hulleman E, de Boer J, Williams O, Pieters R et al. Elevated S100A8/S100A9 expression causes glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 2012; 26: 1255–1265.

    Article  CAS  PubMed  Google Scholar 

  74. Spijkers-Hagelstein JA, Mimoso Pinhancos S, Schneider P, Pieters R, Stam RW . Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 2012; e-pub ahead of print 28 December 2012; doi:10.1038/leu.2012.372.

    Article  PubMed  CAS  Google Scholar 

  75. Accordi B, Galla L, Milani G, Curtarello M, Serafin V, Lissandron V et al. AMPK inhibition enhances apoptosis in MLL-rearranged pediatric B-acute lymphoblastic leukemia cells. Leukemia 2012; e-pub ahead of print 21 November 2012; doi:10.1038/leu.2012.338.

    Article  PubMed  CAS  Google Scholar 

  76. Grembecka J, He S, Shi A, Purohit T, Muntean AG, Sorenson RJ et al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shi A, Murai MJ, He S, Lund G, Hartley T, Purohit T et al. Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia. Blood 2012; 120: 4461–4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 2012; 3: 1288.

    Article  PubMed  CAS  Google Scholar 

  80. Sukhai MA, Spagnuolo PA, Weir S, Kasper J, Patton L, Schimmer AD . New sources of drugs for hematologic malignancies. Blood 2011; 117: 6747–6755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lamb J . The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7: 54–60.

    Article  CAS  PubMed  Google Scholar 

  82. Stumpel DJ, Schneider P, Seslija L, Osaki H, Williams O, Pieters R et al. Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia 2012; 26: 682–692.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J de Boer or O Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, J., Walf-Vorderwülbecke, V. & Williams, O. In focus: MLL-rearranged leukemia. Leukemia 27, 1224–1228 (2013). https://doi.org/10.1038/leu.2013.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.78

Keywords

This article is cited by

Search

Quick links