Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BXSB-type genome causes murine autoimmune glomerulonephritis: pathological correlation between telomeric region of chromosome 1 and Yaa

Abstract

The autoimmune-prone BXSB/MpJ-Yaa mouse is a model of membranous proliferative glomerulonephritis (MPGN). Severe MPGN has been reported only in male BXSB/MpJ-Yaa mice because of the Y-linked autoimmune accelerator (Yaa) locus. However, we show that female BXSB/MpJ mice develop age-related MPGN without Yaa. Female BXSB/MpJ mice clearly developed MPGN characterized by increased mesangial cells, thickening of the glomerular basement membrane (GBM), double contouring and spike formation of GBM with T-cell infiltrations and podocyte injuries corresponding with increased autoantibody production and albuminuria. Analysis of the renal levels of the Fc gamma receptor (Fcgr) and interferon-activated gene 200 (Ifi200) family genes, which are MPGN candidate genes localized to the telomeric region of chromosome 1 (Chr.1), showed that Fcgr2b levels decreased, whereas Fcgr3 and Ifi202b levels increased in female BXSB/MpJ mice compared with healthy C57BL/6 mice. Furthermore, in isolated glomeruli, microarray analysis revealed that Fcgr3, Fcgr4 and Ifi202b expression was higher in male BXSB/MpJ-Yaa mice than in male BXSB/MpJ mice. These findings indicate that the BXSB/MpJ-type genome causes age-related MPGN with significant contribution from the telomeric region of Chr.1, and Yaa enhances the expression of genes localizing to this locus, thereby leading to severe MPGN in male mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Borchers AT, Leibushor N, Naguwa SM, Cheema GS, Shoenfeld Y, Gershwin ME . Lupus nephritis: a critical review. Autoimmun Rev 2012; 12: 174–194.

    Article  Google Scholar 

  2. Henry T, Mohan C . Systemic lupus erythematosus—recent clues from congenic strains. Arch Immunol Ther Exp (Warsz) 2005; 53: 207–212.

    CAS  Google Scholar 

  3. Nguyen C, Limaye N, Wakeland EK . Susceptibility genes in the pathogenesis of murine lupus. Arthritis Res 2002; 4: 255–263.

    Article  Google Scholar 

  4. Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y . Autoimmune glomerulonephritis induced in congenic mouse strain carrying telomeric region of chromosome 1 derived from MRL/MpJ. Histol Histopathol 2008; 23: 411–422.

    CAS  Google Scholar 

  5. Takai T . Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 2005; 25: 1–18.

    Article  CAS  Google Scholar 

  6. Reth M . Antigen receptor tail clue. Nature 1989; 338: 383–384.

    Article  CAS  Google Scholar 

  7. Ravetch JV, Bolland S . IgG Fc receptors. Annu Rev Immunol 2001; 19: 275–290.

    Article  CAS  Google Scholar 

  8. Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y . Altered balance of inhibitory and active Fc gamma receptors in murine autoimmune glomerulonephritis. Kidney Int 2008; 74: 339–347.

    Article  CAS  Google Scholar 

  9. Choubey D . Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol Lett 2012; 147: 10–17.

    Article  CAS  Google Scholar 

  10. Zimmerman M, Yang D, Hu X, Liu F, Singh N, Browning D et al. IFN-γ upregulates survivin and Ifi202 expression to induce survival and proliferation of tumor-specific T cells. PLoS One 2010; 5: e14076.

    Article  Google Scholar 

  11. Ludlow LE, Purton LE, Klarmann K, Gough DJ, Hii LL, Trapani JA et al. The role of p202 in regulating hematopoietic cell proliferation and differentiation. J Interferon Cytokine Res 2008; 28: 5–11.

    Article  CAS  Google Scholar 

  12. Haywood ME, Rose SJ, Horswell S, Lees MJ, Fu G, Walport MJ et al. Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun 2006; 7: 250–263.

    Article  CAS  Google Scholar 

  13. Ichii O, Kamikawa A, Otsuka S, Hashimoto Y, Sasaki N, Endoh D et al. Overexpression of interferon-activated gene 202 (Ifi202) correlates with the progression of autoimmune glomerulonephritis associated with the MRL chromosome 1. Lupus 2010; 19: 897–905.

    Article  CAS  Google Scholar 

  14. Merino R, Fossati L, Izui S . The lupus-prone BXSB strain: the Yaa gene model of systemic lupus erythematosus. Springer Semin Immunopathol 1992; 14: 141–157.

    Article  CAS  Google Scholar 

  15. Kimura J, Ichii O, Otsuka S, Kanazawa T, Namiki Y, Hashimoto Y et al. Quantitative and qualitative urinary cellular patterns correlate with progression of murine glomerulonephritis. PLoS One 2011; 6: e16472.

    Article  CAS  Google Scholar 

  16. Kimura J, Ichii O, Otsuka S, Sasaki H, Hashimoto Y, Kon Y . Close relations between podocyte injuries and membranous proliferative glomerulonephritis in autoimmune murine models. Am J Nephrol 2013; 38: 27–38.

    Article  CAS  Google Scholar 

  17. Izui S, Higaki M, Morrow D, Merino R . The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW × C57BL/6)F1 male mice, but not in C57BL/6 male mice. Eur J Immunol 1988; 18: 911–915.

    Article  CAS  Google Scholar 

  18. Oke V, Wahren-Herlenius M . Cutaneous lupus erythematosus: clinical aspects and molecular pathogenesis. J Intern Med 2013; 273: 544–554.

    Article  CAS  Google Scholar 

  19. Kriz W, LeHir M . Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int 2005; 67: 404–419.

    Article  Google Scholar 

  20. Kawano S, Lin Q, Amano H, Kaneko T, Nishikawa K, Tsurui H et al. Phenotype conversion from rheumatoid arthritis to systemic lupus erythematosus by introduction of Yaa mutation into FcγRIIB-deficient C57BL/6 mice. Eur J Immunol 2013; 43: 770–778.

    Article  CAS  Google Scholar 

  21. Bouman A, Heineman MJ, Faas MM . Sex hormones and the immune response in humans. Hum Reprod Update 2005; 11: 411–423.

    Article  CAS  Google Scholar 

  22. Ichii O, Konno A, Sasaki N, Endoh D, Hashimoto Y, Kon Y . Onset of autoimmune glomerulonephritis derived from the telomeric region of MRL-chromosome 1 is associated with the male sex hormone in mice. Lupus 2009; 18: 491–500.

    Article  CAS  Google Scholar 

  23. Zhou XJ, Lv JC, Bu DF, Yu L, Yang YR, Zhao J et al. Copy number variation of FCGR3A rather than FCGR3B and FCGR2B is associated with susceptibility to anti-GBM disease. Int Immunol 2010; 22: 45–51.

    Article  CAS  Google Scholar 

  24. Fujii T, Hamano Y, Ueda S, Akikusa B, Yamasaki S, Ogawa M et al. Predominant role of FcgammaRIII in the induction of accelerated nephrotoxic glomerulonephritis. Kidney Int 2003; 64: 1406–1416.

    Article  CAS  Google Scholar 

  25. Floege J, Radeke HR, Johnson RJ . Glomerular cells in vitro versus the glomerulus in vivo. Kidney Int 1994; 45: 360–368.

    Article  CAS  Google Scholar 

  26. Radeke HH, Janssen-Graalfs I, Sowa EN, Chouchakova N, Skokowa J, Löscher F et al. Opposite regulation of type II and III receptors for immunoglobulin G in mouse glomerular mesangial cells and in the induction of anti-glomerular basement membrane (GBM) nephritis. J Biol Chem 2002; 277: 27535–27544.

    Article  CAS  Google Scholar 

  27. Jiang Y, Hirose S, Sanokawa-Akakura R, Abe M, Mi X, Li N et al. Genetically determined aberrant down-regulation of FcgammaRIIB1 in germinal center B cells associated with hyper-IgG and IgG autoantibodies in murine systemic lupus erythematosus. Int Immunol 1999; 11: 1685–1691.

    Article  CAS  Google Scholar 

  28. Xiu Y, Nakamura K, Abe M, Li N, Wen XS, Jiang Y et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J Immunol 2002; 169: 4340–4346.

    Article  CAS  Google Scholar 

  29. Pritchard NR, Cutler AJ, Uribe S, Chadban SJ, Morley BJ, Smith KG . Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcgammaRII. Curr Biol 2000; 10: 227–230.

    Article  CAS  Google Scholar 

  30. Xin H, Pramanik R, Choubey D . Retinoblastoma (Rb) protein upregulates expression of the Ifi202 gene encoding an interferon-inducible negative regulator of cell growth. Oncogene 2003; 22: 4775–4785.

    Article  CAS  Google Scholar 

  31. Chen J, Panchanathan R, Choubey D . Stimulation of T cells up-regulates expression of Ifi202, an interferon-inducible lupus susceptibility gene, through activation of JNK/c-Jun pathway. Immunol Lett 2008; 118: 13–20.

    Article  CAS  Google Scholar 

  32. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 2006; 103: 9970–9975.

    Article  CAS  Google Scholar 

  33. Espeli M, Bokers S, Giannico G, Dickinson HA, Bardsley V, Fogo AB et al. Local renal autoantibody production in lupus nephritis. J Am Soc Nephrol 2011; 22: 296–305.

    Article  Google Scholar 

  34. Bekar KW, Owen T, Dunn R, Ichikawa T, Wang W, Wang R et al. Prolonged effects of short-term anti-CD20 B cell depletion therapy in murine systemic lupus erythematosus. Arthritis Rheum 2010; 62: 2443–2457.

    Article  CAS  Google Scholar 

  35. Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Davidson A . Selective blockade of BAFF for the prevention and treatment of systemic lupus erythematosus nephritis in NZM2410 mice. Arthritis Rheum 2010; 62: 1457–1468.

    Article  CAS  Google Scholar 

  36. Chan OT, Hannum LG, Haberman AM . A novel mouse with B cells but lacking serum antibody reveals an antibody independent role for B cells in murine lupus. J Exp Med 1999; 189: 1639–1648.

    Article  CAS  Google Scholar 

  37. Fillatreau S . Cytokine-producing B cells as regulators of pathogenic and protective immune responses. Ann Rheum Dis 2013; 72: 80–84.

    Article  Google Scholar 

  38. Fujimoto M . Regulatory B cells in skin and connective tissue diseases. J Dermatol Sci 2010; 60: 1–7.

    Article  CAS  Google Scholar 

  39. Harris DP, Goodrich S, Gerth AJ, Peng SL, Lund FE . Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 2005; 174: 6781–6790.

    Article  CAS  Google Scholar 

  40. Seeling M, Hillenhoff U, David JP, Schett G, Tuckermann J, Lux A et al. Inflammatory monocytes and Fcγ receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci USA 2013; 110: 10729–10734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grants-in-Aid for Scientific Research from Graduate School of Veterinary Medicine, Hokkaido University, a Grant-in-Aid for JSPS Fellows (No. 25000961), a Grant-in-Aid for Young Scientist (No. 24688033) and a Grant-in-Aid for Scientific Research B (No. 24380156) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Kon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, J., Ichii, O., Nakamura, T. et al. BXSB-type genome causes murine autoimmune glomerulonephritis: pathological correlation between telomeric region of chromosome 1 and Yaa. Genes Immun 15, 182–189 (2014). https://doi.org/10.1038/gene.2014.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2014.4

Keywords

This article is cited by

Search

Quick links