Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preclinical efficacy of the oncolytic measles virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: a novel therapeutic agent allowing noninvasive imaging and radioiodine therapy

Abstract

Anaplastic thyroid cancer is an extremely aggressive disease resistant to radioiodine treatment because of loss of sodium iodide symporter (NIS) expression. To enhance prognosis of this fatal cancer, we validated the preclinical efficacy of measles virus (MV)-NIS, the vaccine strain of the oncolytic MV (MV-Edm), modified to include the NIS gene. Western blotting analysis confirmed that a panel of eight anaplastic thyroid cancer (ATC)-derived cell lines do not express NIS protein, but do express CD46, the MV receptor. In vitro cell death assays and in vivo xenograft studies demonstrate the oncolytic efficacy of MV-NIS in BHT-101 and KTC-3, ATC-derived cell lines. Radioactive iodine uptake along with single-photon emission computed tomography (SPECT)-computed tomography imaging of KTC-3 xenografts after 99Tcm administration confirmed NIS expression in vitro and in vivo, respectively, after virus treatment. Adjuvant administration of RAI, to MV-NIS-treated KTC-3 tumors showed a trend for increased tumor cell killing. As current treatment for ATC is only palliative, and MV-NIS is currently Food and Drug Administration approved for human clinical trials in myeloma, our data indicate that targeting ATC with MV-NIS could prove to be a novel therapeutic strategy for effective treatment of iodine-resistant ATC and will expedite its testing in clinical trials for this aggressive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel R, Ward E, Brawley O, Jemal A . Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61: 212–236.

    Article  Google Scholar 

  2. Farahati J, Geling M, Mader U, Mortl M, Luster M, Muller JG et al. Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981–1995. Thyroid 2004; 14: 141–147.

    Article  Google Scholar 

  3. Haigh PI . Anaplastic thyroid carcinoma. Curr Treat Options Oncol 2000; 1: 353–357.

    Article  CAS  Google Scholar 

  4. Are C, Shaha AR . Anaplastic thyroid carcinoma: biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol 2006; 13: 453–464.

    Article  Google Scholar 

  5. Foote RL, Molina JR, Kasperbauer JL, Lloyd RV, McIver B, Morris JC et al. Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid 2011; 21: 25–30.

    Article  Google Scholar 

  6. Kim JE, Ahn BC, Hwang MH, Jeon YH, Jeong SY, Lee SW et al. Combined RNA interference of hexokinase II and (131)I-sodium iodide symporter gene therapy for anaplastic thyroid carcinoma. J Nucl Med 2011; 52: 1756–1763.

    Article  CAS  Google Scholar 

  7. Libertini S, Abagnale A, Passaro C, Botta G, Barbato S, Chieffi P et al. AZD1152 negatively affects the growth of anaplastic thyroid carcinoma cells and enhances the effects of oncolytic virus dl922-947. Endocr Relat Cancer 2011; 18: 129–141.

    Article  CAS  Google Scholar 

  8. Libertini S, Iacuzzo I, Perruolo G, Scala S, Ierano C, Franco R et al. Bevacizumab increases viral distribution in human anaplastic thyroid carcinoma xenografts and enhances the effects of E1A-defective adenovirus dl922-947. Clin Cancer Res 2008; 14: 6505–6514.

    Article  CAS  Google Scholar 

  9. Reddi HV, Madde P, Reichert-Eberhardt AJ, Galanis EC, Copland JA, McIver B et al. ONYX-411, a conditionally replicative oncolytic adenovirus, induces cell death in anaplastic thyroid carcinoma cell lines and suppresses the growth of xenograft tumors in nude mice. Cancer Gene Ther 2008; 15: 750–757.

    Article  CAS  Google Scholar 

  10. Lin SF, Gao SP, Price DL, Li S, Chou TC, Singh P et al. Synergy of a herpes oncolytic virus and paclitaxel for anaplastic thyroid cancer. Clin Cancer Res 2008; 14: 1519–1528.

    Article  CAS  Google Scholar 

  11. Lin SF, Yu Z, Riedl C, Woo Y, Zhang Q, Yu YA et al. Treatment of anaplastic thyroid carcinoma in vitro with a mutant vaccinia virus. Surgery 2007; 142: 976–983; discussion 976-983.

    Article  Google Scholar 

  12. Lin SF, Price DL, Chen CH, Brader P, Li S, Gonzalez L et al. Oncolytic vaccinia virotherapy of anaplastic thyroid cancer in vivo. J Clin Endocrinol Metab 2008; 93: 4403–4407.

    Article  CAS  Google Scholar 

  13. Kim KI, Kang JH, Chung JK, Lee YJ, Jeong JM, Lee DS et al. Doxorubicin enhances the expression of transgene under control of the CMV promoter in anaplastic thyroid carcinoma cells. J Nucl Med 2007; 48: 1553–1561.

    Article  CAS  Google Scholar 

  14. Libertini S, Iacuzzo I, Ferraro A, Vitale M, Bifulco M, Fusco A et al. Lovastatin enhances the replication of the oncolytic adenovirus dl1520 and its antineoplastic activity against anaplastic thyroid carcinoma cells. Endocrinology 2007; 148: 5186–5194.

    Article  CAS  Google Scholar 

  15. Huang YY, Yu Z, Lin SF, Li S, Fong Y, Wong RJ . Nectin-1 is a marker of thyroid cancer sensitivity to herpes oncolytic therapy. J Clin Endocrinol Metab 2007; 92: 1965–1970.

    Article  CAS  Google Scholar 

  16. Abbosh PH, Li X, Li L, Gardner TA, Kao C, Nephew KP . A conditionally replicative, Wnt/beta-catenin pathway-based adenovirus therapy for anaplastic thyroid cancer. Cancer Gene Ther 2007; 14: 399–408.

    Article  CAS  Google Scholar 

  17. Yu Z, Eisenberg DP, Singh B, Shah JP, Fong Y, Wong RJ . Treatment of aggressive thyroid cancer with an oncolytic herpes virus. Int J Cancer 2004; 112: 525–532.

    Article  CAS  Google Scholar 

  18. Portella G, Pacelli R, Libertini S, Cella L, Vecchio G, Salvatore M et al. ONYX-015 enhances radiation-induced death of human anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 2003; 88: 5027–5032.

    Article  CAS  Google Scholar 

  19. Portella G, Scala S, Vitagliano D, Vecchio G, Fusco A . ONYX-015, an E1B gene-defective adenovirus, induces cell death in human anaplastic thyroid carcinoma cell lines. J Clin Endocrinol Metab 2002; 87: 2525–2531.

    Article  CAS  Google Scholar 

  20. Mullen JT, Tanabe KK . Viral oncolysis. Oncol 2002; 7: 106–119.

    CAS  Google Scholar 

  21. Smallridge RC, Copland JA . Anaplastic thyroid carcinoma: pathogenesis and emerging therapies. Clin Oncol (Royal College of Radiologists (Great Britain)) 2010; 22: 486–497.

    Article  CAS  Google Scholar 

  22. Smallridge RC, Marlow LA, Copland JA . Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer 2009; 16: 17–44.

    Article  CAS  Google Scholar 

  23. Hasegawa K, Nakamura T, Harvey M, Ikeda Y, Oberg A, Figini M et al. The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res 2006; 12 (20 Part 1): 6170–6178.

    Article  CAS  Google Scholar 

  24. Dingli D, Peng KW, Harvey ME, Greipp PR, O’Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  Google Scholar 

  25. Cho CH, Nuttall ME . Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases. Expert Opin Ther Targets 2002; 6: 679–689.

    Article  CAS  Google Scholar 

  26. Van Nostrand D, Wartofsky L . Radioiodine in the treatment of thyroid cancer. Endocrinol Metab Clin North Am 2007; 36: 807–822, vii–viii.

    Article  Google Scholar 

  27. Hasegawa K, Pham L, O’Connor MK, Federspiel MJ, Russell SJ, Peng KW . Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 2006; 12: 1868–1875.

    Article  CAS  Google Scholar 

  28. Blechacz B, Splinter PL, Greiner S, Myers R, Peng KW, Federspiel MJ et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology (Baltimore, MD) 2006; 44: 1465–1477.

    Article  CAS  Google Scholar 

  29. Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 2008; 93: 4331–4341.

    Article  CAS  Google Scholar 

  30. Castro MR, Bergert ER, Beito TG, McIver B, Goellner JR, Morris JC . Development of monoclonal antibodies against the human sodium iodide symporter: immunohistochemical characterization of this protein in thyroid cells. J Clin Endocrinol Metab 1999; 84: 2957–2962.

    CAS  PubMed  Google Scholar 

  31. Denizot F, Lang R . Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Meth 1986; 89: 271–277.

    Article  CAS  Google Scholar 

  32. Spitzweg C, Dietz AB, O’Connor MK, Bergert ER, Tindall DJ, Young CY et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 2001; 8: 1524–1531.

    Article  CAS  Google Scholar 

  33. Smit JW, Schroder-van der Elst JP, Karperien M, Que I, Stokkel M, van der Heide D et al. Iodide kinetics and experimental (131)I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 2002; 87: 1247–1253.

    Article  CAS  Google Scholar 

  34. Ain KB . Management of undifferentiated thyroid cancer. Baillieres Best Pract Res Clin Endocrinol Metab 2000; 14: 615–629.

    Article  CAS  Google Scholar 

  35. Dhiman N, Jacobson RM, Poland GA . Measles virus receptors: SLAM and CD46. Rev Med Virol 2004; 14: 217–229.

    Article  CAS  Google Scholar 

  36. Yamakawa M, Yamada K, Tsuge T, Ohrui H, Ogata T, Dobashi M et al. Protection of thyroid cancer cells by complement-regulatory factors. Cancer 1994; 73: 2808–2817.

    Article  CAS  Google Scholar 

  37. Li H, Peng KW, Russell SJ . Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther 2012; 23: 295–301.

    Article  Google Scholar 

  38. Opyrchal M, Allen C, Iankov I, Aderca I, Schroeder M, Sarkaria J, et al.Effective radiovirotherapy for malignant gliomas by using oncolytic measles virus strains encoding the sodium iodide symporter (MV-NIS). Hum Gene Ther 2012; 23: 419–427.

    Article  CAS  Google Scholar 

  39. Msaouel P, Iankov ID, Allen C, Aderca I, Federspiel MJ, Tindall DJ et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol Ther 2009; 17: 2041–2048.

    Article  CAS  Google Scholar 

  40. Penheiter AR, Wegman TR, Classic KL, Dingli D, Bender CE, Russell SJ et al. Sodium iodide symporter (NIS)-mediated radiovirotherapy for pancreatic cancer. Am J Roentgenol 2010; 195: 341–349.

    Article  Google Scholar 

  41. Namba H, Hara T, Tukazaki T, Migita K, Ishikawa N, Ito K et al. Radiation-induced G1 arrest is selectively mediated by the p53-WAF1/Cip1 pathway in human thyroid cells. Cancer Res 1995; 55: 2075–2080.

    CAS  PubMed  Google Scholar 

  42. Yang T, Namba H, Hara T, Takmura N, Nagayama Y, Fukata S et al. p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 1997; 14: 1511–1519.

    Article  CAS  Google Scholar 

  43. Bulgin D, Podtcheko A, Takakura S, Mitsutake N, Namba H, Saenko V et al. Selective pharmacologic inhibition of c-Jun NH2-terminal kinase radiosensitizes thyroid anaplastic cancer cell lines via induction of terminal growth arrest. Thyroid 2006; 16: 217–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Wendy Will Case Cancer Fund (HVR) and Fraternal Order of Eagles (HVR) and Mayo Foundation (NLE). We thank our nuclear medicine technologist, Tracy Decklever for technical expertise and imaging assistance. We thank Dr Mark J Federspiel and the staff of the Viral Vector Production Laboratory for supplying clinical grade MV-NIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N L Eberhardt.

Ethics declarations

Competing interests

Drs SJR and KWP are named inventors on patents employing viral vectors for therapeutic purposes. Drs SJR and JCM, III are named inventors on a patent employing NIS expression for noninvasive monitoring of gene delivery.

Additional information

Supplementary Information accompanies this paper on the Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddi, H., Madde, P., McDonough, S. et al. Preclinical efficacy of the oncolytic measles virus expressing the sodium iodide symporter in iodine non-avid anaplastic thyroid cancer: a novel therapeutic agent allowing noninvasive imaging and radioiodine therapy. Cancer Gene Ther 19, 659–665 (2012). https://doi.org/10.1038/cgt.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.47

Keywords

This article is cited by

Search

Quick links