Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT

Abstract

Data collected from hematopoietic SCT (HSCT) centers are becoming more abundant and complex owing to the formation of organized registries and incorporation of biological data. Typically, conventional statistical methods are used for the development of outcome prediction models and risk scores. However, these analyses carry inherent properties limiting their ability to cope with large data sets with multiple variables and samples. Machine learning (ML), a field stemming from artificial intelligence, is part of a wider approach for data analysis termed data mining (DM). It enables prediction in complex data scenarios, familiar to practitioners and researchers. Technological and commercial applications are all around us, gradually entering clinical research. In the following review, we would like to expose hematologists and stem cell transplanters to the concepts, clinical applications, strengths and limitations of such methods and discuss current research in HSCT. The aim of this review is to encourage utilization of the ML and DM techniques in the field of HSCT, including prediction of transplantation outcome and donor selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Copelan EA . Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813–1826.

    Article  CAS  Google Scholar 

  2. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med 363: 2091–2101.

  3. Hamadani M, Craig M, Awan FT, Devine SM . How we approach patient evaluation for hematopoietic stem cell transplantation. Bone Marrow Transplant 45: 1259–1268.

  4. Gratwohl A, Stern M, Brand R, Apperley J, Baldomero H, de Witte T et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer 2009; 115: 4715–4726.

    Article  Google Scholar 

  5. Parimon T, Au DH, Martin PJ, Chien JW . A risk score for mortality after allogeneic hematopoietic cell transplantation. Ann Intern Med 2006; 144: 407–414.

    Article  Google Scholar 

  6. Sorror ML, Maris MB, Storb R, Baron F, Sandmaier BM, Maloney DG et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005; 106: 2912–2919.

    Article  CAS  Google Scholar 

  7. Breiman L . Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat Sci 2001; 16: 199–231.

    Article  Google Scholar 

  8. Bagley SC, White H, Golomb BA . Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001; 54: 979–985.

    Article  CAS  Google Scholar 

  9. Hand DJ . Data mining: statistics and more? Am Stat 1998; 52: 112–118.

    Google Scholar 

  10. Sun GW, Shook TL, Kay GL . Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol 1996; 49: 907–916.

    Article  CAS  Google Scholar 

  11. Tu JV . Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996; 49: 1225–1231.

    Article  CAS  Google Scholar 

  12. Jensen PB, Jensen LJ, Brunak S . Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012; 13: 395–405.

    Article  CAS  Google Scholar 

  13. Jitao Z, Ting W A general framework for medical data mining. Future Information Technology and Management Engineering (FITME), 2010 International Conference, Changzhou, China, 2010.

  14. Mitchell T . Machine Learning 1st edn. McGraw Hill, Blacklick, Ohio, USA, 1997.

    Google Scholar 

  15. Mitchell T . Machine learning and data mining. Commun ACM 1999; 42: 30–36.

    Article  Google Scholar 

  16. Iavindrasana J, Cohen G, Depeursinge A, Muller H, Meyer R, Geissbuhler A . Clinical data mining: a review. Yearb Med Inform 2009;, 121–133.

  17. Han J, Kamber M, Pei J . Data Mining: Concepts and Techniques 3rd edn. Morgan Kaufmann, 2012.

    Google Scholar 

  18. Witten IH, Frank E, Hall MA . Data Mining: Practical Machine Learning Tools and Techniques 3rd edn Morgan Kaufmann, 2011).

    Google Scholar 

  19. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  Google Scholar 

  20. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  Google Scholar 

  21. Kantardzic M . Data Mining: Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press, 2011.

    Book  Google Scholar 

  22. Chapman P, Clinton J, Kerber R, Khabaza T, Reinartz R, Shearer C et al. CRISP-DM 1.0: step-by-step data mining guide. CRISP-DM Consortium Tech Rep 2000.

  23. Del Fiol G, Haug PJ . Classification models for the prediction of clinicians’ information needs. J Biomed Inform 2009; 42: 82.

    Article  Google Scholar 

  24. Hall MA, Holmes G . Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowledge Data Eng 2003; 15: 1437–1447.

    Article  Google Scholar 

  25. Kingsford C, Salzberg SL . What are decision trees? Nat Biotechnol 2008; 26: 1011–1013.

    Article  CAS  Google Scholar 

  26. Nakayama N, Oketani M, Kawamura Y, Inao M, Nagoshi S, Fujiwara K et al. Algorithm to determine the outcome of patients with acute liver failure: a data-mining analysis using decision trees. J Gastroenterol 2012; 47: 664–677.

    Article  Google Scholar 

  27. Takada M, Sugimoto M, Naito Y, Moon HG, Han W, Noh DY et al. Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model. BMC Med Inform Decis Mak 2012; 12: 54.

    Article  Google Scholar 

  28. Dogan S, Turkoglu I . Iron-deficiency anemia detection from hematology parameters by using decision trees. Int J Sci Technol 2008; 3: 85–92.

    Google Scholar 

  29. Breiman L . Random forests. Mach Learn 2001; 45: 5–32.

    Article  Google Scholar 

  30. Krogh A . What are artificial neural networks? Nat Biotechnol 2008; 26: 195–197.

    Article  CAS  Google Scholar 

  31. Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, Harrell FE et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 1997; 79: 857–862.

    Article  CAS  Google Scholar 

  32. Sato F, Shimada Y, Selaru FM, Shibata D, Maeda M, Watanabe G et al. Prediction of survival in patients with esophageal carcinoma using artificial neural networks. Cancer 2005; 103: 1596–1605.

    Article  Google Scholar 

  33. Sargent DJ . Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 2001; 91: 1636–1642.

    Article  CAS  Google Scholar 

  34. Rotondano G, Cipolletta L, Grossi E, Koch M, Intraligi M, Buscema M et al. Artificial neural networks accurately predict mortality in patients with nonvariceal upper GI bleeding. Gastrointest Endosc 2011; 73: 226 e1–2.

    Article  Google Scholar 

  35. Lisboa PJ, Taktak AF . The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 2006; 19: 408–415.

    Article  Google Scholar 

  36. Caocci G, Baccoli R, Vacca A, Mastronuzzi A, Bertaina A, Piras E et al. Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Exp Hematol 38: 426–433.

  37. Noble WS . What is a support vector machine? Nat Biotechnol 2006; 24: 1565–1567.

    Article  CAS  Google Scholar 

  38. Chia CC, Rubinfeld I, Scirica BM, McMillan S, Gurm HS, Syed Z . Looking beyond historical patient outcomes to improve clinical models. Sci Transl Med 4: 131ra49.

  39. A data mining approach to MPGN type II renal survival analysis. Proceedings of the 1st ACM International Health Informatics Symposium. ACM, 2010.

  40. Lu C, Van Gestel T, Suykens JA, Van Huffel S, Vergote I, Timmerman D . Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artif Intell Med 2003; 28: 281–306.

    Article  CAS  Google Scholar 

  41. Stone M . Cross-validatory choice and assessment of statistical predictions. J Royal Stat Soc, Series B (Methodological) 1974, 111–147.

  42. Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A . Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 2006; 37: 7–18.

    Article  Google Scholar 

  43. Linden A . Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006; 12: 132–139.

    Article  Google Scholar 

  44. Sarkar C, Cooley S, Srivastava J Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation. Computer Science and Information Systems (FedCSIS), 2012 Federated Conference on 9–12 September, 2012.

  45. Improved feature selection for hematopoietic cell transplantation outcome prediction using rank aggregation 2012 Federated Conference on Computer Science and Information Systems (FedCSIS); 9–12 September 2012.

  46. Jerez JM, Molina I, Garcia-Laencina PJ, Alba E, Ribelles N, Martin M et al. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif Intell Med 2010; 50: 105–115.

    Article  Google Scholar 

  47. Ng T, Chew L, Yap CW . A clinical decision support tool to predict survival in cancer patients beyond 120 days after palliative chemotherapy. J Palliat Med 2012; 15: 863–869.

    Article  Google Scholar 

  48. Delen D, Oztekin A, Kong ZJ . A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif Intell Med 2010; 49: 33–42.

    Article  Google Scholar 

  49. De Souza CA, Vigorito AC, Ruiz MA, Nucci M, Dulley FL, Funcke V et al. Validation of the EBMT risk score in chronic myeloid leukemia in Brazil and allogeneic transplant outcome. Haematologica 2005; 90: 232–237.

    PubMed  Google Scholar 

  50. Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 1998; 352: 1087–1092.

    Article  CAS  Google Scholar 

  51. Lodewyck T, Oudshoorn M, van der Holt B, Petersen E, Spierings E, von dem Borne PA et al. Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia. Leukemia 2011; 25: 1548–1554.

    Article  CAS  Google Scholar 

  52. Schmid C, Labopin M, Nagler A, Niederwieser D, Castagna L, Tabrizi R et al. Treatment, risk factors, and outcome of adults with relapsed AML after reduced intensity conditioning for allogeneic stem cell transplantation. Blood 2012; 119: 1599–1606.

    Article  CAS  Google Scholar 

  53. Sorror M, Storer B, Sandmaier BM, Maloney DG, Chauncey TR, Langston A et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer 2008; 112: 1992–2001.

    Article  Google Scholar 

  54. Xhaard A, Porcher R, Chien JW, de Latour RP, Robin M, Ribaud P et al. Impact of comorbidity indexes on non-relapse mortality. Leukemia 2008; 22: 2062–2069.

    Article  CAS  Google Scholar 

  55. Fayyad U, Piatetsky-Shapiro G, Smyth P . The KDD process for extracting useful knowledge from volumes of data. Commun ACM 1996; 39: 27–34.

    Article  Google Scholar 

  56. Stajduhar I, Dalbelo-Basic B, Bogunovic N . Impact of censoring on learning Bayesian networks in survival modelling. Artif Intell Med 2009; 47: 199–217.

    Article  Google Scholar 

  57. Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ . Survival ensembles. Biostatistics 2006; 7: 355–373.

    Article  Google Scholar 

  58. Sesen MB, Kadir T, Alcantara RB, Fox J, Brady M . Survival prediction and treatment recommendation with Bayesian techniques in lung cancer. AMIA Annu Symp Proc 2012, 838–847.

  59. Schwarzer G, Vach W, Schumacher M . On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Israeli Cancer Association (grant no. 20130180). Dr Roni Shouval was supported by the Dr Pinchas Borenstein Talpiot Medical Leadership Program 2013 fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Shouval.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shouval, R., Bondi, O., Mishan, H. et al. Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT. Bone Marrow Transplant 49, 332–337 (2014). https://doi.org/10.1038/bmt.2013.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2013.146

Keywords

This article is cited by

Search

Quick links