Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brca1 required for T cell lineage development but not TCR loci rearrangement

Abstract

Brca1 (breast cancer1, early onset) deficiency results in early embryonic lethality. As Brca1 is highly expressed in the T cell lineage, a T cell–specific disruption of Brca1 was generated to assess the role of Brca1 in relation to T lymphocyte development. We found that thymocyte development in Brca1−/− mice was impaired not as a result of V(D)J T cell receptor (TCR) recombination but because thymocytes had increased expression of tumor protein p53. Chromosomal damage accumulation and abnormal cell death were observed in mutant cells. We found that cell death inhibitor Bcl-2 overexpression, or p53−/− backgrounds, completely restored survival and development of Brca1−/− thymocytes; peripheral T cell numbers were not totally restored in Brca1−/− p53−/− mice; and that a mutant background for p21 (cyclin-dependent kinase inhibitor 1A) did not restore Brca1−/− thymocyte development, but partially restored peripheral T cell development. Thus, the outcome of Brca1 deficiency was dependent on cellular context, with the major defects being increased apoptosis in thymocytes, and defective proliferation in peripheral T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of the Brca1 conditional mutation.
Figure 2: Defective T cell lineage development in the absence of Brca1.
Figure 3: Effect of Brca1 deficiency on thymocyte apoptosis and peripheral T cell proliferation.
Figure 4: Genetic instability in thymocytes deficient for Brca1.

Similar content being viewed by others

References

  1. Fischer, A. and Malissen, B. Natural and engineered disorders of lymphocyte development. Science 5361, 237–243 (1998).

    Google Scholar 

  2. Sleckman, B.P. et al. Accessibility control of variable region gene assembly during T-cell development. Immunol. Rev. 165, 121–130 (1998).

    CAS  PubMed  Google Scholar 

  3. Frank, K.M. et al. Late embryonic lethality and impaired V (D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998).

    CAS  PubMed  Google Scholar 

  4. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    CAS  PubMed  Google Scholar 

  5. Ford, D., Easton, D.F., Bishop, D.T., Narod, S.A. & Goldgar, D.E. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343, 692–695 (1994).

    CAS  PubMed  Google Scholar 

  6. Miki, Y. et al. A strong candidate for the breast and ovarian-cancer susceptibility gene. Science 266, 66–71 (1994).

    CAS  PubMed  Google Scholar 

  7. Gudas, J.M. et al. Cell cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell. Growth Differ. 7, 717–723 (1996).

    CAS  PubMed  Google Scholar 

  8. Chen, Y. et al. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 56, 3168–3172 (1996).

    CAS  PubMed  Google Scholar 

  9. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    CAS  PubMed  Google Scholar 

  10. Thomas, J.E., Smith, M., Tonkinson, J.L., Rubinfeld, B. & Polakis, P. Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ. 8, 801–809 (1997).

    CAS  PubMed  Google Scholar 

  11. Cortez, D., Wang, Y., Qin, J. & Elledge, S.J. Requirement of ATM-dependent phosphorylation of BRCA1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    CAS  PubMed  Google Scholar 

  12. Lee, J.S., Collins, K.M., Brown, A.L., Lee, C.H. & Chung, J.H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    CAS  PubMed  Google Scholar 

  13. Scully, R. et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88, 265–275 (1997).

    CAS  PubMed  Google Scholar 

  14. Zhong, Q. et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    CAS  PubMed  Google Scholar 

  15. Shen, S.X. et al. A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17, 3115–3124 (1998).

    CAS  PubMed  Google Scholar 

  16. Gowen, L.C., Avrutskaya, A.V., Latour, A.M., Koller, B.H. & Leadon, S.A. BRCA1 is required for transcription-coupled repair of oxidative DNA damage. Science 281, 1009–1012 (1998).

    CAS  PubMed  Google Scholar 

  17. Gowen, L.C., Johnson, B.L., Latour, A.M., Sulik, K.K. & Koller, B.H. Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nature Genet. 12, 191–194 (1996).

    CAS  PubMed  Google Scholar 

  18. Hakem, R. et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85, 1009–1023 (1996).

    CAS  PubMed  Google Scholar 

  19. Liu, C.Y., Flesken-Nikitin, A., Li, S., Zeng, Y. & Lee, W.H. Inactivation of the mouse Brca1 gene leads to failure in the morphogenesis of the egg cylinder in early postimplantation development. Genes Dev. 10, 1835–1843 (1996).

    CAS  PubMed  Google Scholar 

  20. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods. Ann. Companion Meth. Enzymol. 14, 381–392 (1998).

    CAS  Google Scholar 

  21. Hennet, T., Hagen, F.K., Tabak, L.A. & Marth, J.D. T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl- transferase gene by site-directed recombination. Proc. Natl Acad. Sci. USA 92, 12070–12074 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    CAS  PubMed  Google Scholar 

  23. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    CAS  PubMed  Google Scholar 

  24. el-Deiry, W.S. Regulation of p53 downstream genes. Semin. Cancer Biol. 8, 345–357 (1998).

    CAS  PubMed  Google Scholar 

  25. Oltvai, Z.N., Milliman, C.L. & Korsmeyer, S.J. Bcl2 heterodimerizes in vivo with a conserved homolog Bax, that accelerates programmed cell death. Cell 74, 609–619 (1993).

    CAS  PubMed  Google Scholar 

  26. Ludwig, T., Chapman, D.L., Papaioannou, V.E. & Efstratiadis, A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 11, 1226–1241 (1997).

    CAS  PubMed  Google Scholar 

  27. Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5-6) early embryonic lethality by p53 or p21 null mutation. Nature Genet. 16, 298–302 (1997).

    CAS  PubMed  Google Scholar 

  28. Linette, G.P. et al. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205 (1994).

    CAS  PubMed  Google Scholar 

  29. Strasser, A., Harris, A.W., Corcoran, L.M. & Cory, S. Bcl-2 expression promotes B- but not T-lymphoid development in scid mice. Nature 368, 457–460 (1994).

    CAS  PubMed  Google Scholar 

  30. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor- deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    CAS  PubMed  Google Scholar 

  31. Haks, M.C., Krimpenfort, P., van den Brakel, J.H. & Kruisbeek, A.M., Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11, 91–101 (1999).

    CAS  PubMed  Google Scholar 

  32. Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

  33. Difilippantonio, M.J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brugarolas, J. et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377, 552–557 (1995).

    CAS  PubMed  Google Scholar 

  35. Strasser, A., Harris, A.W. & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991).

    CAS  PubMed  Google Scholar 

  36. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic patways in vivo. Cell 94, 339–352 (1998).

    CAS  PubMed  Google Scholar 

  37. Dracopoli, N.C. Current Protocols in Human Genetics (John Wiley and Sons Inc, New York, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razqallah Hakem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, T., Hakem, A., McPherson, J. et al. Brca1 required for T cell lineage development but not TCR loci rearrangement. Nat Immunol 1, 77–82 (2000). https://doi.org/10.1038/76950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing