Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis

Abstract

Accumulation of fibrils composed of amyloid A in tissues resulting in displacement of normal structures and cellular dysfunction is the characteristic feature of systemic amyloidoses. Here we show that RAGE, a multiligand immunoglobulin superfamily cell surface molecule, is a receptor for the amyloidogenic form of serum amyloid A. Interactions between RAGE and amyloid A induced cellular perturbation. In a mouse model, amyloid A accumulation, evidence of cell stress and expression of RAGE were closely linked. Antagonizing RAGE suppressed cell stress and amyloid deposition in mouse spleens. These data indicate that RAGE is a potential target for inhibiting accumulation of amyloid A and for limiting cellular dysfunction induced by amyloid A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of RAGE, deposition of amyloid A and expression of M-CSF in human spleen.
Figure 2: Interaction of RAGE with amyloid A fibrils, and RAGE-dependent activation of BV-2 transformed mononuclear phagocytes by SAA1.1.
Figure 3: Effect of RAGE blockade on systemic amyloidosis in a mouse model: plasma SAA levels, splenic NF-κB activation and expression of transcripts for cell stress markers.
Figure 4: Effect of RAGE blockade on systemic amyloidosis in a mouse model.
Figure 5: Soluble RAGE infusion in a mouse model of systemic amyloidosis: effect on splenic RAGE expression.
Figure 6: Effect of RAGE blockade in a mouse model of systemic amyloidosis: isolation of SAA–sRAGE complex from mouse plasma and effect on splenic amyloid deposition.
Figure 7: Amylin and prion-peptide-derived fibrils bind RAGE and mediate RAGE-dependent NF-kB actvation on BV-2 cells.

Similar content being viewed by others

References

  1. Sipe, J. Amyloidosis Annu. Rev. Biochem. 61, 947– 975, 1992

    Article  CAS  Google Scholar 

  2. Falk, R., Comenzo, R. & Skinner, M. The systemic amyloidoses N. Engl. J. Med. 337, 898–908, 1997

    Article  CAS  Google Scholar 

  3. Gillmore, J., Hawkins, P. & Pepys, M. Amyloidosis: a review of recent diagnostic and therapeutic developments Br. J. Haematol. 99, 245– 256 (1997).

    Article  CAS  Google Scholar 

  4. Hoshii, Y. et al. Amyloid A protein amyloidosis induced in ApoE-deficient mice Am. J. Pathol. 151, 911– 917 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wisniewski, T. & Frangione, B. ApoE: a pathological chaperone protein in patients with cerebral and systemic amyloid Neurosci. Lett. 135:235–238 ( 1992).

    Article  CAS  Google Scholar 

  6. Kindy, M. & Rader, D. Reduction in amyloid A amyloid formation in apolipoprotein E-deficient mice Am. J. Pathol. 152 , 1387–1395 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kindy, M., King, A., Perry, G., deBeer, M. & deBeer, F. Association of apolipoprotein E with murine amyloid A protein amyloid Lab. Invest. 73, 469– 475 (1995).

    CAS  PubMed  Google Scholar 

  8. Hawkins, P., Tennent, G., Woo, P. & Pepys, M. Studies in vivo and in vitro of serum amyloid P component in normals and in a patient with AA amyloidosis Clin. Exp. Immunol. 84, 308–316 (1991).

    Article  CAS  Google Scholar 

  9. Botto, M. et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene Nature Med. 3 , 855–859 (1997).

    Article  CAS  Google Scholar 

  10. Kisilevsky, R. et al. Arresting amyloidosis in vivo using small molecule anionic sulphonates or sulphates: implications for Alzheimer's disease Nature Med. 1, 143–148 ( 1995).

    Article  CAS  Google Scholar 

  11. Rysava, R., Merta, M., Tesar, V., Jirsa, M. & Zima, T. Can serum amyloid A or macrophage colony stimulating factor serve as a marker of amyloid formation? Biochem. Mol. Biol. Int. 47, 845–850 (1999).

    CAS  PubMed  Google Scholar 

  12. Schmidt, A-M., Yan, S-D., Wautier, J-L. & Stern, D. Activation of RAGE: a mechanism for chronic dysfunction in diabetic vasculopathy and atherosclerosis Circ. Res. 84, 489–497 (1999).

    Article  CAS  Google Scholar 

  13. Hofmann, M. et al. RAGE mediates a novel proinflammatory axis: the cell surface receptor for S100/calgranulin polypeptides Cell 97, 889–901 (1999).

    Article  CAS  Google Scholar 

  14. Yan, S-D., Roher, A., Schmidt, A-M. & Stern D. Cellular cofactors for amyloid beta-peptide induced by cell stress: moving from cell culture to in vivo Am. J. Pathol. 155, 1403 –1411 (1999).

    Article  CAS  Google Scholar 

  15. Shiroo, M., Kawahara, E., Nakanishi, I. & Migita, S. Specific deposition of serum amyloid A protein 2 in the mouse Scand. J. Immunol. 332, 721–728 (1998).

    Google Scholar 

  16. Strachen, A., deBeer, F., van der Westhuyzen, D. & Coetzee, G. Identification of three isoform patterns of human serum amyloid A protein Biochem. J. 250, 203–207 (1988).

    Article  Google Scholar 

  17. DeBeer, M., deBeer, F., McCubin, W., Kay, C. & Kindy, M. Structural prerequisites for serum amyloid A fibril formation J. Biol. Chem. 268, 20606–20612 (1993).

    CAS  Google Scholar 

  18. Sipe, J. et al. Characterization of the inbred CE/J mouse strain as amyloid resistant Am. J. Pathol. 143, 1480– 1485 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, L. et al. Suppression of accelerated diabetic atherosclerosis by sRAGE Nature Med. 4, 1025–1031 (1998).

    Article  CAS  Google Scholar 

  20. Bocchini, V. et al. An immortalized cell line expresses properties of activated microglial cells J. Neurosci. Res. 31, 616 –621 (1992).

    Article  CAS  Google Scholar 

  21. Yan, S-D. et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease Nature 382, 685–691 (1996).

    Article  CAS  Google Scholar 

  22. Suffredini, A., Fantuzzi, G., Badolato, R., Oppenheim, H. & O'Grady, N. New insights into the biology of the acute phase response J. Clin. Immunol. 19, 203–214 (1999).

    Article  CAS  Google Scholar 

  23. Collins, T. Endothelial nuclear factor kB and the initiation of the atherosclerotic lesion Lab. Invest. 68, 499–508 (1993).

    CAS  PubMed  Google Scholar 

  24. Husebekk, A., Skogen, B., Husby, G. & Marbaug, G. Transformation of amyloid precursor SAA to protein AA and incorporation in amyloid fibrils in vivo Scan. J. Immunol. 21, 283– 287 (1985).

    Article  CAS  Google Scholar 

  25. Kirschner, D., Abraham, C. & Selkoe, D. X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibrils in Alzheimer's disease indicates cross-beta conformation Proc. Natl. Acad. Sci. USA 83, 503–507 (1986).

    Article  CAS  Google Scholar 

  26. Kimball, M., Sato, A., Richardson, J., Rosen, L. & Low, B. Molecular conformation of erabutoxin b Biochem. Biophys. Res. Comm. 88, 950–956 ( 1979).

    Article  CAS  Google Scholar 

  27. Dickson, D. Microglia in Alzheimer's disease and transgenic models Am. J. Pathol. 154, 1627–1631 ( 1999).

    Article  CAS  Google Scholar 

  28. Uchihara, T., Akiyama, H., Kondo, H. & Ikeda, K. Activated microglial cells are colocalized with perivascular deposits of amyloid beta-peptide in Alzheimer's disease brain Stroke 28, 1948 –1950 (1997).

    Article  CAS  Google Scholar 

  29. Yan, S-D. et al. Amyloid beta peptide-RAGE interaction elicits neuronal expression of M-CSF: a proinflammatory pathway in Alzheimer disease Proc. Natl. Acad. Sci. USA 94, 5296–5301 (1997).

    Article  CAS  Google Scholar 

  30. Fixe, P. & Praloran, V. M-CSF: haematopoietic growth factor or inflammatory cytokine? Cytokine 10, 32 –37 (1998).

    Article  CAS  Google Scholar 

  31. Hamilton, J. CSF-1 signal transduction J. Leukoc. Biol. 62: 145–155 (1997).

    Article  CAS  Google Scholar 

  32. Hume, D. et al. Regulation of CSF-1 receptor expression Mol. Reprod. Dev. 46, 46–52 ( 1997).

    Article  CAS  Google Scholar 

  33. Ando, Y. et al. Oxidative stress is found in amyloid deposits in systemic amyloidosis Biochem. Biophys. Res. Commun. 232, 497 –502 (1997).

    Article  CAS  Google Scholar 

  34. Ritthaler, U. et al. Expression of RAGE in peripheral occlusive vascular disease Am. J. Pathol. 146, 688– 694 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wautier, J-L. et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble RAGE blocks hyperpermeability J. Clin. Invest. 97, 238–243 ( 1996).

    Article  CAS  Google Scholar 

  36. Rudderman, N., Williamson, J. & Brownlee, M. Glucose and diabetic vascular disease FASEB J. 6, 2905–2914 ( 1992).

    Article  Google Scholar 

  37. Brett, J. et al. Tissue distribution of RAGE: expression in smooth muscle, cardiac myocytes, and neural tissue in addition to the vasculature Am. J. Pathol. 143, 1699–1712 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hori, O. et al. RAGE is a cellular binding site for amphoterin: mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system J. Biol. Chem. 270, 25752 –25761 (1995).

    Article  CAS  Google Scholar 

  39. Schafer, B. & Heizmann, C. The S100 family of EF-hand calcium-binding proteins: functions and pathology Trends Biochem. Sci. 21, 134–140 (1996).

    Article  CAS  Google Scholar 

  40. Wang, H. et al. HMG1 as a late mediator of endotoxin lethality in mice Science 285, 248–251, 1999.

    Article  CAS  Google Scholar 

  41. Taguchi, A. et al. Blockade of RAGE/amphoterin axis suppresses tumor growth and metastases Nature (in the press).

  42. Prelli, F., Pras, M. & Frangione, B. Degradation and deposition of amyloid A fibrils are tissue specific Biochemistry 26, 8251– 8256 (1987).

    Article  CAS  Google Scholar 

  43. Klotz, I. & Hunston, D. Mathematical models for ligand-receptor binding J. Biol. Chem. 258, 11442– 11445 (1984).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US Public Health Service (AG00690, AG14103, AG12891, NS31220, HL56881 and HL69091), the Juvenile Diabetes Foundation International and the Surgical Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi Du Yan or Mark Kindy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Zhu, H., Zhu, A. et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis . Nat Med 6, 643–651 (2000). https://doi.org/10.1038/76216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing