Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood-onset neuropsychiatric disorder. Treatment with methylphenidate, which blocks dopamine and noradrenaline transporters, is clinically efficacious in reducing the symptoms of ADHD. However, a considerable proportion of patients show no or only insufficient response to methylphenidate. Following a pharmacogenetic approach, a number of studies have suggested that heterogeneity in treatment response across subjects might to some extent be due to genetic factors. In particular, a variable number tandem repeat (VNTR) polymorphism in the 3′ untranslated region of the SLC6A3 gene, which codes for the dopamine transporter, has been considered as a predictor of treatment success. However, the literature has so far been inconsistent. Here we present results of a meta-analysis of studies investigating the moderating effect of the SLC6A3 VNTR on response to methylphenidate treatment in subjects with ADHD. Outcome measures from 16 studies including data from 1572 subjects were entered into a random-effects model. There was no significant summary effect for the SLC6A3 VNTR on the response to methylphenidate treatment (P>0.5) and no effect on specific symptom dimensions of hyperactivity/impulsivity and inattention (all P>0.2). However, in a subanalysis of naturalistic trials, we observed a significant effect of d=−0.36 (P=0.03), indicating that 10R homozygotes show less improvement in symptoms following treatment than the non-10/10 carriers. This meta-analysis indicates that SLC6A3 VNTR is not a reliable predictor of methylphenidate treatment success in ADHD. Our study leaves unanswered the question of whether other genetic polymorphisms or nongenetic factors may contribute to the observed heterogeneity in treatment response across ADHD subjects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American Psychiatric Association. DSM-IV-TR–Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association: Washington, DC, 2000.

  2. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005; 57: 1313–1323.

    Article  CAS  PubMed  Google Scholar 

  3. Burt SA . Rethinking environmental contributions to child and adolescent psychopathology: a meta-analysis of shared environmental influences. Psychol Bull 2009; 135: 608–637.

    Article  PubMed  Google Scholar 

  4. Franke B, Faraone SV, Asherson P, Buitelaar J, Bau CHD, Ramos-Quiroga JA et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol Psychiatry 2011; 17: 960–987.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Faraone SV, Sergeant J, Gillberg C, Biederman J . The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2003; 2: 104–113.

    PubMed  PubMed Central  Google Scholar 

  6. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 2011; 21: 655–679.

    Article  CAS  PubMed  Google Scholar 

  7. Simon V, Czobor P, Bálint S, Mészáros A, Bitter I . Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry 2009; 194: 204–211.

    Article  PubMed  Google Scholar 

  8. Polanczyk MD, De Lima MD, Horta MD, Biederman MD, Rohde MD . The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007; 164: 942–948.

    Article  PubMed  Google Scholar 

  9. Fayyad J, De Graaf R, Kessler R, Alonso J, Angermeyer M, Demyttenaere K et al. Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry 2007; 190: 402–409.

    Article  CAS  PubMed  Google Scholar 

  10. Kessler RC, Adler L, Barkley R, Biederman J, Conners CK, Demler O et al. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 2006; 163: 716–723.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Birnbaum HG, Kessler RC, Lowe SW, Secnik K, Greenberg PE, Leong SA et al. Costs of attention deficit-hyperactivity disorder (ADHD) in the US: excess costs of persons with ADHD and their family members in 2000. Curr Med Res Opin 2005; 21: 195–206.

    Article  PubMed  Google Scholar 

  12. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001; 21: RC121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faraone SV, Spencer T, Aleardi M, Pagano C, Biederman J . Meta-analysis of the efficacy of methylphenidate for treating adult attention-deficit/hyperactivity disorder. J Clin Psychopharmacol 2004; 24: 24–29.

    Article  CAS  PubMed  Google Scholar 

  14. Schachter HM, Pham B, King J, Langford S, Moher D . How efficacious and safe is short-acting methylphenidate for the treatment of attention-deficit disorder in children and adolescents? A meta-analysis. CMAJ 2001; 165: 1475–1488.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thurber S, Walker CE . Medication and hyperactivity: a meta-analysis. J Gen Psychol 1983; 108, (1st Half) 79–86.

    Article  CAS  PubMed  Google Scholar 

  16. Kavale K . The efficacy of stimulant drug treatment for hyperactivity: a meta-analysis. J Learn Disabil 1982; 15: 280–289.

    Article  CAS  PubMed  Google Scholar 

  17. Greenhill LL, Pliszka S, Dulcan MK, Bernet W, Arnold V, Beitchman J et al. Summary of the practice parameter for the use of stimulant medications in the treatment of children, adolescents, and adults. J Am Acad Child Adolesc Psychiatry 2001; 40: 1352–1355.

    Article  CAS  PubMed  Google Scholar 

  18. Koesters M, Becker T, Kilian R, Fegert JM, Weinmann S . Limits of meta-analysis: methylphenidate in the treatment of adult attention-deficit hyperactivity disorder. J Psychopharmacol (Oxford) 2009; 23: 733–744.

    Article  CAS  Google Scholar 

  19. Castells X, Ramos-Quiroga JA, Rigau D, Bosch R, Nogueira M, Vidal X et al. Efficacy of methylphenidate for adults with attention-deficit hyperactivity disorder: a meta-regression analysis. CNS Drugs 2011; 25: 157–169.

    Article  CAS  PubMed  Google Scholar 

  20. Aron AR, Dowson JH, Sahakian BJ, Robbins TW . Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 2003; 54: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  21. Mehta MA, Calloway P, Sahakian BJ . Amelioration of specific working memory deficits by methylphenidate in a case of adult attention deficit/hyperactivity disorder. J Psychopharmacol (Oxford) 2000; 14: 299–302.

    Article  CAS  Google Scholar 

  22. Rubia K, Noorloos J, Smith A, Gunning B, Sergeant J . Motor timing deficits in community and clinical boys with hyperactive behavior: the effect of methylphenidate on motor timing. J Abnorm Child Psychol 2003; 31: 301–313.

    Article  PubMed  Google Scholar 

  23. Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW . Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 2000; 20: RC65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nandam LS, Hester R, Wagner J, Cummins TDR, Garner K, Dean AJ et al. Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol Psychiatry 2011; 69: 902–904.

    Article  CAS  PubMed  Google Scholar 

  25. Allman A-A, Ettinger U, Joober R, O’Driscoll G . Effects of methylphenidate on basic and higher-order oculomotor functions. J Psychopharamcol 2012; 26: 1471–1479.

    Article  Google Scholar 

  26. Charach A, Ickowicz A, Schachar R . Stimulant treatment over five years: adherence, effectiveness, and adverse effects. J Am Acad Child Adolesc Psychiatry 2004; 43: 559–567.

    Article  PubMed  Google Scholar 

  27. Polanczyk G, Faraone SV, Bau CHD, Victor MM, Becker K, Pelz R et al. The impact of individual and methodological factors in the variability of response to methylphenidate in ADHD pharmacogenetic studies from four different continents. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1419–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burdick KE, Gopin CB, Malhotra AK . Pharmacogenetic approaches to cognitive enhancement in schizophrenia. Harv Rev Psychiatry 2011; 19: 102–108.

    Article  PubMed  Google Scholar 

  29. Kieling C, Genro JP, Hutz MH, Rohde LA . A current update on ADHD pharmacogenomics. Pharmacogenomics 2010; 11: 407–419.

    Article  CAS  PubMed  Google Scholar 

  30. Froehlich TE, McGough JJ, Stein MA . Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs 2010; 24: 99–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arranz MJ, Kapur S . Pharmacogenetics in psychiatry: are we ready for widespread clinical use? Schizophr Bull 2008; 34: 1130–1144.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cravchik A, Goldman D . Neurochemical individuality: genetic diversity among human dopamine and serotonin receptors and transporters. Arch Gen Psychiatry 2000; 57: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  33. Garris PA, Wightman RM . Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. J Neurosci 1994; 14: 442–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG . Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379: 606–612.

    Article  CAS  PubMed  Google Scholar 

  35. VanNess SH, Owens MJ, Kilts CD . The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 1992; 14: 1104–1106.

    Article  CAS  PubMed  Google Scholar 

  37. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti P . The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvement in neuropsychiatric disorders. Eur Neuropsychopharmacol 2001; 11: 449–455.

    Article  CAS  PubMed  Google Scholar 

  38. Kang AM, Palmatier MA, Kidd KK . Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3). Biol Psychiatry 1999; 46: 151–160.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell RJ, Howlett S, Earl L, White NG, McComb J, Schanfield MS et al. Distribution of the 3’ VNTR polymorphism in the human dopamine transporter gene in world populations. Hum Biol 2000; 72: 295–304.

    CAS  PubMed  Google Scholar 

  40. Costa A, Riedel M, Müller U, Möller H-J, Ettinger U . Relationship between SLC6A3 genotype and striatal dopamine transporter availability: a meta-analysis of human single photon emission computed tomography studies. Synapse 2011; 65: 998–1005.

    Article  CAS  PubMed  Google Scholar 

  41. Mignone F, Gissi C, Liuni S, Pesole G . Untranslated regions of mRNAs. Genome Biol. 2002; 3: REVIEWS0004.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nakamura Y, Koyama K, Matsushima M . VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators. J Hum Genet 1998; 43: 149–152.

    Article  CAS  PubMed  Google Scholar 

  43. Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U . Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? a meta-analysis. Am J Psychiatry 2012; 169: 264–272.

    Article  PubMed  Google Scholar 

  44. Winsberg BG, Comings DE . Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 1999; 38: 1474–1477.

    Article  CAS  PubMed  Google Scholar 

  45. Roman T, Szobot C, Martins S, Biederman J, Rohde LA, Hutz MH . Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics 2002; 12: 497–499.

    Article  CAS  PubMed  Google Scholar 

  46. Cheon K-A, Ryu Y-H, Kim J-W, Cho D-Y . The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsychopharmacol 2005; 15: 95–101.

    Article  CAS  PubMed  Google Scholar 

  47. Kooij JS, Boonstra AM, Vermeulen SH, Heister AG, Burger H, Buitelaar JK et al. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 201–208.

    Article  PubMed  Google Scholar 

  48. Kirley A, Lowe N, Hawi Z, Mullins C, Daly G, Waldman I et al. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet 2003; 121B: 50–54.

    Article  PubMed  Google Scholar 

  49. Stein MA, Waldman ID, Sarampote CS, Seymour KE, Robb AS, Conlon C et al. Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 2005; 30: 1374–1382.

    Article  CAS  PubMed  Google Scholar 

  50. Joober R, Grizenko N, Sengupta S, Amor LB, Schmitz N, Schwartz G et al. Dopamine transporter 3′-UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology 2007; 32: 1370–1376.

    Article  CAS  PubMed  Google Scholar 

  51. Van der Meulen EM, Bakker SC, Pauls DL, Oteman N, CLJJ Kruitwagen, Pearson PL et al. High sibling correlation on methylphenidate response but no association with DAT1-10R homozygosity in Dutch sibpairs with ADHD. J Child Psychol Psychiatry 2005; 46: 1074–1080.

    Article  PubMed  Google Scholar 

  52. Langley K, Turic D, Peirce TR, Mills S, Van Den Bree MB, Owen MJ et al. No support for association between the dopamine transporter (DAT1) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 2005; 139B: 7–10.

    Article  CAS  PubMed  Google Scholar 

  53. McGough J, McCracken J, Swanson J, Riddle M, Kollins S, Greenhill L et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 2006; 45: 1314–1322.

    Article  PubMed  Google Scholar 

  54. Mick E, Biederman J, Spencer T, Faraone SV, Sklar P . Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 890–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeni CP, Guimarães AP, Polanczyk GV, Genro JP, Roman T, Hutz MH et al. No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 391–394.

    Article  PubMed  Google Scholar 

  56. Tharoor H, Lobos EA, Todd RD, Reiersen AM . Association of dopamine, serotonin, and nicotinic gene polymorphisms with methylphenidate response in ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 527–530.

    Article  PubMed  Google Scholar 

  57. Kereszturi E, Tarnok Z, Bognar E, Lakatos K, Farkas L, Gadoros J et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1431–1435.

    Article  CAS  PubMed  Google Scholar 

  58. Contini V, Victor MM, Marques FZC, Bertuzzi GP, Salgado CAI, Silva KL et al. Response to methylphenidate is not influenced by DAT1 polymorphisms in a sample of Brazilian adult patients with ADHD. J Neural Transm 2010; 117: 269–276.

    Article  CAS  PubMed  Google Scholar 

  59. Loo SK, Specter E, Smolen A, Hopfer C, Teale PD, Reite ML . Functional effects of the DAT1 polymorphism on EEG measures in ADHD. J Am Acad Child Adolesc Psychiatry 2003; 42: 986–993.

    Article  PubMed  Google Scholar 

  60. Purper-Ouakil D, Wohl M, Orejarena S, Cortese S, Boni C, Asch M et al. Pharmacogenetics of methylphenidate response in attention deficit/hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  61. PubMed database [Internet]. Available from http://www.ncbi.nlm.nih.gov/pubmed/.

  62. Cohen J . Statistical power analysis for the behavioral sciences. Lawrence Erlbaum: NJ, USA, 1988.

    Google Scholar 

  63. Cox DR . The analysis of binary data 1970. Chapman & Hall/CRC: New York, 54.

    Google Scholar 

  64. Sánchez-Meca J, Marín-Martínez F, Chacón-Moscoso S . Effect-size indices for dichotomized outcomes in meta-analysis. Psycholog Methods 2003; 8: 448.

    Article  Google Scholar 

  65. Viechtbauer W . Conducting meta-analyses in R with the metafor package. J Stat Softw 2010; 36: 1–48.

    Article  Google Scholar 

  66. Hedges LV, Vevea JL . Fixed-and random-effects models in meta-analysis. Psychol Methods 1998; 3: 486.

    Article  Google Scholar 

  67. Hedges LV, Olkin I . Statistical Methods for Meta-Analysis. Academic Press: New York, 1985.

    Google Scholar 

  68. Raudenbusch S . Analysing effect sizes: random effects models. In: Harris C, Larry VH, Jeffrey CV (eds) The Handbook of Research Synthesis and Meta-Analysis 2nd edn (Russell Sage Foundation: New York, 2009), pp 295–315.

    Google Scholar 

  69. Higgins J, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Egger M, Smith GD, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L . Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat Med 2007; 26: 4544–4562.

    Article  PubMed  Google Scholar 

  72. Gilbert DL, Wang Z, Sallee FR, Ridel KR, Merhar S, Zhang J et al. Dopamine transporter genotype influences the physiological response to medication in ADHD. Brain 2006; 129 (Pt 8): 2038–2046.

    Article  PubMed  Google Scholar 

  73. McGough JJ, McCracken JT, Loo SK, Manganiello M, Leung MC, Tietjens JR et al. A candidate gene analysis of methylphenidate response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2009; 48: 1155–1164.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Malhotra AK, Lencz T, Correll CU, Kane JM . Genomics and the future of pharmacotherapy in psychiatry. Int Rev Psychiatry 2007; 19: 523–530.

    Article  PubMed  Google Scholar 

  75. Dresel S, Krause J, Krause KH, LaFougere C, Brinkbäumer K, Kung HF et al. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 2000; 27: 1518–1524.

    Article  CAS  PubMed  Google Scholar 

  76. La Fougère C, Krause J, Krause K-H, Josef Gildehaus F, Hacker M, Koch W et al. Value of 99mTc-TRODAT-1 SPECT to predict clinical response to methylphenidate treatment in adults with attention deficit hyperactivity disorder. Nucl Med Commun 2006; 27: 733–737.

    Article  PubMed  Google Scholar 

  77. Bellgrove MA, Hawi Z, Kirley A, Fitzgerald M, Gill M, Robertson IH . Association between dopamine transporter (DAT1) genotype, left-sided inattention, and an enhanced response to methylphenidate in attention-deficit hyperactivity disorder. Neuropsychopharmacology 2005; 30: 2290–2297.

    Article  CAS  PubMed  Google Scholar 

  78. Mick E, Neale B, Middleton FA, McGough JJ, Faraone SV . Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1412–1418.

    Article  CAS  PubMed  Google Scholar 

  79. Wang WYS, Barratt BJ, Clayton DG, Todd JA . Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet. 2005; 6: 109–118.

    Article  CAS  PubMed  Google Scholar 

  80. Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW . The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 69: e145–e157.

    Article  CAS  PubMed  Google Scholar 

  81. Nigg JT, Willcutt EG, Doyle AE, Sonuga-Barke EJ . Causal heterogeneity in attention-deficit/hyperactivity disorder: do we need neuropsychologically impaired subtypes? Biol Psychiatry 2005; 57: 1224–1230.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Joseph Kambeitz is supported by a doctoral fellowship of BayEFG. Ulrich Ettinger is supported by the DFG Emmy Noether programme (ET 31/2-1). We thank Cristian Patrick Zeni, Veronica Contini, Aiveen Kirley, Diane Purper-Ouakil, Sandra K Loo, Harriet de Wit and Sandra Kooij for providing us with data necessary for the meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kambeitz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kambeitz, J., Romanos, M. & Ettinger, U. Meta-analysis of the association between dopamine transporter genotype and response to methylphenidate treatment in ADHD. Pharmacogenomics J 14, 77–84 (2014). https://doi.org/10.1038/tpj.2013.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2013.9

Keywords

This article is cited by

Search

Quick links