Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability

Abstract

Cancers often exhibit high levels of cyclin E expression, and aberrant cyclin E activity causes genomic instability and increased tumorigenesis. Two tumor suppressor pathways protect cells against cyclin E deregulation. The p53 pathway is induced by excess cyclin E in primary cells and opposes cyclin E activity through induction of p21Cip1. In contrast, the Fbw7 pathway targets cyclin E for degradation, and Fbw7 mutations occur commonly in cancers. We investigated the cooperativity of these two pathways in countering cyclin E-induced genomic instability in primary human cells. We find that loss of p53 and Fbw7 synergistically unmasks cyclin E-induced instability. In normal cells, impaired cyclin E degradation produces genome instability, but this is rapidly mitigated by induction of p53 and p21. In contrast, p53 loss allows the high level of cyclin E kinase activity that results from Fbw7 loss to persist and continuously drive genome instability. Moreover, p21 plays a critical role in suppressing cyclin E when Fbw7 is disabled, and in the absence of p21, sustained cyclin E activity induces rapid cell death via apoptosis. These data directly demonstrate the cooperative roles of these Fbw7 and p53 pathways in restraining cyclin E activity and its associated genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM . (1996). Turnover of cyclin E by the ubiquitin–proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10: 1979–1990.

    Article  CAS  PubMed  Google Scholar 

  • Dumaz N, Meek DW . (1999). Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18: 7002–7010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI . (2004). Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165: 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD et al. (2007). Kinase-independent function of cyclin E. Mol Cell 25: 127–139.

    Article  CAS  PubMed  Google Scholar 

  • Hwang HC, Clurman BE . (2005). Cyclin E in normal and neoplastic cell cycles. Oncogene 24: 2776–2786.

    Article  CAS  PubMed  Google Scholar 

  • Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW et al. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Loeb K, Kostner H, Firpo E, Norwood T, Tsuchiya K, Clurman BE et al. (2005). A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8: 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432: 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE . (2002). p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol 12: 1817–1827.

    Article  CAS  PubMed  Google Scholar 

  • Minella AC, Welcker M, Clurman BE . (2005). Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA 102: 9649–9654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK . (2001). Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413: 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Nateri AS, Riera-Sans L, Da Costa C, Behrens A . (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303: 1374–1378.

    Article  CAS  PubMed  Google Scholar 

  • Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL et al. (2004). Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21Cip1 repression. Mol Cell Biol 24: 8813–8822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U . (2001). The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 276: 35847–35853.

    Article  CAS  PubMed  Google Scholar 

  • Orlicky S, Tang X, Willems A, Tyers M, Sicheri F . (2003). Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112: 243–256.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Waldman T, He TC, Kinzler KW, Vogelstein B . (1996). Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10: 1945–1952.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. (2004). Inactivation of hCDC4 can cause chromosomal instability. Nature 428: 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Smith AP, Henze M, Lee JA, Osborn KG, Keck JM, Tedesco D et al. (2006). Deregulated cyclin E promotes p53 loss of heterozygosity and tumorigenesis in the mouse mammary gland. Oncogene 25: 7245–7259.

    Article  CAS  PubMed  Google Scholar 

  • Spruck CH, Strohmaier H, Sangfelt O, Muller HM, Hubalek M, Muller-Holzner E et al. (2002). hCDC4 Gene mutations in endometrial cancer. Cancer Res 62: 4535–4539.

    CAS  PubMed  Google Scholar 

  • Spruck CH, Won KA, Reed SI . (1999). Deregulated cyclin E induces chromosome instability. Nature 401: 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI . (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316–322.

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin W . (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8: 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101: 9085–9090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M et al. (2003). Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 12: 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Won KA, Reed SI . (1996). Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15: 4182–4193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A et al. (2001). SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol 21: 7403–7415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23: 2116–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Williams and Sandeep Mukherjee (Phenopath, Seattle) for assistance with the FISH analyses. This work was supported by National Institutes of Health Grant nos. R01CA84069 and R01CA102742 (to BEC) and Research Career Award K08CA101800 (to ACM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B E Clurman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minella, A., Grim, J., Welcker, M. et al. p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene 26, 6948–6953 (2007). https://doi.org/10.1038/sj.onc.1210518

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210518

Keywords

This article is cited by

Search

Quick links