Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HOXA1-stimulated oncogenicity is mediated by selective upregulation of components of the p44/42 MAP kinase pathway in human mammary carcinoma cells

Abstract

Expression of homeobox A1 (HOXA1) results in oncogenic transformation of immortalized human mammary epithelial cells with aggressive tumor formation in vivo. However, the mechanisms by which HOXA1 mediates oncogenic transformation is not well defined. To identify molecules that could potentially be involved in HOXA1-mediated oncogenic transformation, microarray analysis was utilized to characterize and compare the gene expression pattern in response to forced expression or depletion of HOXA1 in human mammary carcinoma cells. Gene expression profiling identified that genes involved in the p44/42 mitogen-activated protein (MAP) kinase activation pathway (GRB2, MAP kinase kinase (MEK1) and SDFR1) or p44/42 MAP kinase-regulated genes (IER3, EPAS1, PCNA and catalase) are downstream expression targets of HOXA1. Forced expression of HOXA1 increased GRB2 and MEK1 mRNA and protein expression and increased p44/42 MAP kinase phosphorylation, activity and Elk-1-mediated transcription. Use of a MEK1 inhibitor demonstrated that increased p44/42 MAP kinase activity is required for the HOXA1-mediated increase in cell proliferation, survival, oncogenicity and oncogenic transformation. Thus, modulation of the p44/42 MAP kinase pathway is one mechanism by which HOXA1 mediates oncogenic transformation of the human mammary epithelial cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bajetto A, Barbero S, Bonavia R, Piccioli P, Pirani P, Florio T et al. (2001). Stromal cell-derived factor-1alpha induces astrocyte proliferation through the activation of extracellular signal-regulated kinases 1/2 pathway. J Neurochem 77: 1226–1236.

    Article  CAS  PubMed  Google Scholar 

  • Chariot A, Castronovo V . (1996). Detection of HOXA1 expression in human breast cancer. Biochem Biophys Res Commun 222: 292–297.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Sukumar S . (2003). Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mamm Gland Biol Neoplasia 8: 159–175.

    Article  Google Scholar 

  • Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W et al. (1998). Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95: 793–803.

    Article  CAS  PubMed  Google Scholar 

  • Clarkson RW, Shang CA, Levitt LK, Howard T, Waters MJ . (1999). Ternary complex factors Elk-1 and Sap-1a mediate growth hormone-induced transcription of egr-1 (early growth response factor-1) in 3T3-F442A preadipocytes. Mol Endocrinol 13: 619–631.

    Article  CAS  PubMed  Google Scholar 

  • Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE . (1999). EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274: 33709–33713.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T et al. (2003). SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 31: 219–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Bar-Sagi D . (1993). Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 363: 88–92.

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Ye Y, Arranz V, Letourneux C, Pezeron G, Porteu F . (2002). IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. EMBO J 21: 5151–5163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH et al. (1995). ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14: 951–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grill C, Gheyas F, Dayananth P, Jin W, Ding W, Qiu P et al. (2004). Analysis of the ERK1,2 transcriptome in mammary epithelial cells. Biochem J 381: 635–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM et al. (2001). Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33: 1929–1936.

    Article  CAS  PubMed  Google Scholar 

  • Lord JD, McIntosh BC, Greenberg PD, Nelson BH . (2000). The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol 164: 2533–2541.

    Article  CAS  PubMed  Google Scholar 

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K et al. (1994). Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.

    Article  CAS  PubMed  Google Scholar 

  • Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE . (2001). Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J Biol Chem 276: 21464–21475.

    Article  CAS  PubMed  Google Scholar 

  • Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U . (2000). Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 89: 384–388.

    Article  CAS  PubMed  Google Scholar 

  • Prosperi E . (1997). Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control. Prog Cell Cycle Res 3: 193–210.

    Article  CAS  PubMed  Google Scholar 

  • Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22: 4456–4462.

    Article  CAS  PubMed  Google Scholar 

  • Ruvolo PP, Deng X, May WS . (2001). Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 15: 515–522.

    Article  CAS  PubMed  Google Scholar 

  • Salh B, Marotta A, Matthewson C, Ahluwalia M, Flint J, Owen D et al. (1999). Investigation of the Mek-MAP kinase-Rsk pathway in human breast cancer. Anticancer Res 19: 731–740.

    CAS  PubMed  Google Scholar 

  • Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, Gowan RC et al. (1999). Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med 5: 810–816.

    Article  CAS  PubMed  Google Scholar 

  • Seger R, Krebs EG . (1995). The MAPK signaling cascade. FASEB J 9: 726–735.

    Article  CAS  PubMed  Google Scholar 

  • Shin SI, Freedman VH, Risser R, Pollack R . (1975). Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 72: 4435–4439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CX, Song JH, Song DK, Yong VW, Shuaib A, Hao C . (2005). Cyclin-dependent kinase-5 prevents neuronal apoptosis through ERK-mediated upregulation of Bcl-2. Cell Death Differ 13: 1203–1212.

    Article  PubMed  Google Scholar 

  • Xu XQ, Emerald BS, Goh EL, Kannan N, Miller LD, Gluckman PD et al. (2005). Gene expression profiling to identify oncogenic determinants of autocrine human growth hormone in human mammary carcinoma. J Biol Chem 280: 23987–24003.

    Article  CAS  PubMed  Google Scholar 

  • Yu FQ, Han CS, Yang W, Jin X, Hu ZY, Liu YX . (2005). Role of ERK1/2 in FSH induced PCNA expression and steroidogenesis in granulosa cells. Front Biosci 10: 896–904.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu T, Chen Y, Mertani HC, Lee KO, Lobie PE . (2003). Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 278: 7580–7590.

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Starling-Emerald B, Zhang X, Lee KO, Gluckman PD, Mertani HC et al. (2005a). Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res 65: 317–324.

    CAS  PubMed  Google Scholar 

  • Zhu Z, Mukhina S, Zhu T, Mertani HC, Lee KO, Lobie PE . (2005b). p44/42 MAP kinase-dependent regulation of catalase by autocrine human growth hormone protects human mammary carcinoma cells from oxidative stress-induced apoptosis. Oncogene 24: 3774–3785.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P E Lobie.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohankumar, K., Xu, X., Zhu, T. et al. HOXA1-stimulated oncogenicity is mediated by selective upregulation of components of the p44/42 MAP kinase pathway in human mammary carcinoma cells. Oncogene 26, 3998–4008 (2007). https://doi.org/10.1038/sj.onc.1210180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210180

Keywords

This article is cited by

Search

Quick links