Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children

Abstract

The search for genetic factors predisposing to Attention Deficit Hyperactivity Disorder (ADHD) has focused on genes that regulate dopaminergic pathways such as dopamine receptors and enzymes that regulate levels of dopamine in the synapse. There have been several reports of association between ADHD and polymorphic variants within or near DRD4, DRD5, DAT1, DBH and COMT. In this study we set out to investigate specific alleles of DRD4 and DRD5, previously reported to be associated with ADHD, in a sample of Turkish children with DSM-IV ADHD children, as well as their relation to methylphenidate response and dimensional measures of symptom domains. One hundred and four independent trios and seven dyads were analysed using the transmission disequilibrium test (TDT). We found increased transmission of the DRD4 7-repeat allele (DRD4*7) (TDT χ2 = 2.79, P = 0.047). Given that we were testing specific a priori hypotheses regarding the associated alleles, we have used one-tailed P-values throughout. There was evidence of an interaction with methlyphenidate (MPH) response and analysis of the sample excluding non-responders revealed more significant evidence for the association (TDT χ2 = 4.48, P = 0.017). We also detected a trend for linkage and association in the DRD5 polymorphism (TDT χ2 = 2.38, P = 0.06). Similar findings were obtained in relation to MPH response as analysis of MPH responders alone gave rise to a more significant association than that of the group as a whole (TDT χ2 = 4.9, P = 0.013). t-Test and logistic regression TDT analyses of DRD4*7 transmission with respect to dimensional rating scales of hyperactivity and impulsivity showed an inverse relation suggesting that in this sample DRD4*7 is associated with a lower level of ADHD symptomatology. While this may be due to stratification along a dimension of severity such that severe cases belong to a more extreme group with other specific genetic and environmental causes, similar to the model for low cognitive ability, it is more likely the result of a chance selection bias in this sample.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taylor E, Chadwick O, Heptinstall E et al. Hyperactivity and conduct problems as risk factors for adolescent development J Am Acad Child Adolesc Psychiatry 1996; 35: 1213–1226

    Article  CAS  PubMed  Google Scholar 

  2. Swanson J, Castellanos FX, Murias M et al. Cognitive neuroscience of attention deficit hyperactivity disorder and hyperkinetic disorder Curr Opin Neurobiol 1998; 8: 263–271

    CAS  PubMed  Google Scholar 

  3. Cantwell DP . Psychiatric illness in families of hyperactive children Arch Gen Psychiatry 1972; 27: 728–738

    Article  Google Scholar 

  4. Biederman J, Faraone SV, Keenan K et al. Family-genetic and psychosocial risk factors in DSM-III attention deficit disorder J Am Acad Child Adolesc Psychiatry 1990; 29: 526–533

    Article  CAS  PubMed  Google Scholar 

  5. Biederman J, Faraone SV, Keenan K et al. Further evidence for family-genetic risk factors in attention deficit hyperactivity disorder: patterns of comorbidity in probands and relatives in psychiatrically and pediatrically referred samples Arch Gen Psychiatry 1992; 49: 728–738

    Article  CAS  PubMed  Google Scholar 

  6. Stevenson J . Evidence for a genetic aetiology in hyperactivity in children Behav Genet 1992; 22: 337–344

    Article  CAS  PubMed  Google Scholar 

  7. Goodman R, Stevenson J . A twin study of hyperactivity I and II. An examination of hyperactivity scores and categories derived from Rutter teacher and parent questionnaires J Child Psychol Psychiat 1989; 30: 671–689

    Article  CAS  PubMed  Google Scholar 

  8. Thapar A, Holmes J, Poulton K et al. Genetic basis of attention deficit and hyperactivity Br J Psychiatry 1999; 174: 105–111

    Article  CAS  PubMed  Google Scholar 

  9. Levy F, Hay DA, McStephen M et al. Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study J Am Acad Child Adolesc Psychiatry 1997; 36: 737–744

    Article  CAS  PubMed  Google Scholar 

  10. Eaves LJ, Silberg JL, Meyer JM et al. Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development J Child Psychol Psychiatry Allied Discip 1997; 38: 965–980

    Article  CAS  Google Scholar 

  11. Shekim WO, Javaid J, Davis JM et al. Urinary MHPG and HVA excretion in boys with attention deficit disorder and hyperactivity treated with d-amphetamine Biol Psychiatry 1983; 18: 707–714

    CAS  PubMed  Google Scholar 

  12. Shen YC, Wang YF . 3-methoxy-4-hydroxyphenylglycol sulfate excretion in 73 schoolchildren with minimal brain-dysfunction syndrome Biol Psychiatry 1984; 19: 861–870

    CAS  PubMed  Google Scholar 

  13. Zametkin AJ, Karoum F, Rapoport JL . Phenylethylamine excretion in attention deficit disorder J Am Acad Child Psychiatry 1984; 23: 310–314

    Article  CAS  PubMed  Google Scholar 

  14. Arnold LE, Abikoff HB, Cantwell DP et al. National Institute of Mental Health Collaborative Multimodal Treatment Study of Children with ADHD (the MTA): design challenges and choices Arch Gen Psychiatry 1997; 54: 865–870

    Article  CAS  PubMed  Google Scholar 

  15. Gainetdinov RR, Wetsel WC, Jones SR et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity Science 1999; 283: 397–401

    Article  CAS  PubMed  Google Scholar 

  16. Shaywitz BA . CSF amine metabolites in children with minimal brain dysfunction (MBD): evidence of involvement of brain dopamine J Pediatr 1977; 90: 67–71

    Article  CAS  PubMed  Google Scholar 

  17. Goldman-Rakic PS . Topography of cognition: parallel distribution networks in primate association cortex Ann Rev Neurosci 1992; 11: 137–156

    Article  Google Scholar 

  18. Lahoste GJ, Swanson JM, Wigal S et al. Dopamine D4 receptor gene polymorphism is associated with attention-deficit hyperactivity disorder Mol Psychiatry 1996; 1: 121–124

    CAS  PubMed  Google Scholar 

  19. Swanson JM, Sunohara GA, Kennedy JL et al. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach Mol Psychiatry 1998; 3: 38–41

    Article  CAS  PubMed  Google Scholar 

  20. World Health Organisation . International Classification of Diseases: 10th edn WHO: Geneva 1999

    Google Scholar 

  21. Rowe DC, Stever C, Giedinghagen LN et al. Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder Mol Psychiatry 1998; 3: 419–426

    Article  CAS  PubMed  Google Scholar 

  22. Smalley SL, Bailey JN, Palmer CG et al. Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder Mol Psychiatry 1998; 3: 427–430

    Article  CAS  PubMed  Google Scholar 

  23. Faraone SV, Biederman J, Weiffenbach B et al. Dopamine D4 gene 7-repeat allele and attention deficit hyperactivity disorder Am J Psychiatry 1999; 156: 768–770

    CAS  PubMed  Google Scholar 

  24. Asherson P, Virdee V, Curran S et al. Association study of DSM-IV attention deficit hyperactivity disorder (ADHD) and monoamine pathway genes Neuropsychiatric Genet 1998; 81: 549

    Google Scholar 

  25. Gill M . Unpublished data, 1999

  26. Castellanos FX, Lau E, Tayebi N et al. Lack of an association between a dopamine-4 receptor polymorphism and attention-deficit/hyperactivity disorder: genetic and brain morphometric analyses Mol Psychiatry 1998; 3: 431–434

    Article  CAS  PubMed  Google Scholar 

  27. Ebstein RP, Novick O, Umansky R et al. Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking Nature Genet 1996; 12: 78–80

    Article  CAS  PubMed  Google Scholar 

  28. Benjamin J, Li L, Patterson C et al. Population and familial association between the D4 dopamine receptor gene and measures of Novelty Seeking Nature Genet 1996; 12: 81–84

    Article  CAS  PubMed  Google Scholar 

  29. Paterson AD, Sunohara GA, Kennedy JL . Dopamine D4 receptor gene: novelty or nonsense? Neuropsychopharmacology 1999; 21: 3–16

    Article  CAS  PubMed  Google Scholar 

  30. Daly G, Hawi Z, Fitzgerald M et al. Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children Mol Psychiatry 1999; 4: 192–196

    Article  CAS  PubMed  Google Scholar 

  31. Cook JE, Stein MA, Krasowski MD et al. Association of attention-deficit disorder and the dopamine transporter gene Am J Hum Genet 1995; 56: 993–998

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gill M, Daly G, Heron S et al. Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism Mol Psychiatry 1997; 2: 311–313

    Article  CAS  PubMed  Google Scholar 

  33. Waldman ID, Robinson BF, Feigon SA . Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder: Extending the transmission disequilibrium test (TDT) to examine genetic heterogeneity Genet Epidemiol 1997; 14: 699–704

    Article  CAS  PubMed  Google Scholar 

  34. Bailey JN . DRD4 gene susceptibility to attention deficit hyperactivity disorder: differences in familial and sporadic cases Am J Med Gen (Neuropsych Gen) 1997; 74: 623 (abstract)

    Google Scholar 

  35. Tahir E . No association between ADHD and polymorphisms in DAT1 and DBH Unpublished data 1999

    Google Scholar 

  36. Sunohara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG et al. Cloning of the gene for a human dopamine D5-receptor with higher affinity for dopamine than D1 Nature 1991; 350: 614–619

    Article  Google Scholar 

  37. Asghari V, Sanyal S, Buchwaldt S et al. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants J Neurochem 1995; 65: 1157–1165

    Article  CAS  PubMed  Google Scholar 

  38. Asghari V, Schoots O, Van Kats S et al. Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes Mol Pharmacol 1994; 46: 364–373

    CAS  PubMed  Google Scholar 

  39. Kaufman J, Birmaher B, Brent D et al. Schedule for affective disorders and schizophrenia for school-age children–present and lifetime version (K-SADS-PL): initial reliability and validity data J Am Acad Child Adolesc Psychiatry 1997; 36: 980–988

    Article  CAS  PubMed  Google Scholar 

  40. Conners CK, Barkley RA . Rating scales and checklists for child psychopharmacology Psychopharmacol Bull 1985; 21: 809–843

    CAS  PubMed  Google Scholar 

  41. Achenbach TM . Manual for the Child Behaviour Checklist 1991; Department of Psychiatry, University of Vermont, Burlington

  42. Greenhill LL, Abikoff HB, Arnold LE, Cantwell DP, Conners CK, Elliott G et al. Medication treatment strategies in the MTA Study: relevance to clinicians and researchers J Am Acad Child Adolesc Psychiatry 1996; 35: 1304–1313

    Article  CAS  PubMed  Google Scholar 

  43. Lichter JB, Barr CL, Kennedy JL et al. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene Hum Mol Genet 1993; 2: 767–773

    Article  CAS  PubMed  Google Scholar 

  44. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) Am J Hum Genet 1993; 52: 506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schaid DJ, Sommer SS . Genotype relative risks: methods for design and analysis of candidate-gene association studies Am J Hum Genet 1993; 53: 1114–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sham PC, Curtis D . An extended transmission/disequilibrium test (TDT) for multiallele marker loci Ann Hum Genet 1995; 59: 323–336

    Article  CAS  PubMed  Google Scholar 

  47. Waldman ID, Robinson BF, Rhee SH . A logistic regression extension of the transmission disequilibrium test for continuous traits: application to linkage disequilibrium between alcoholism and the candidate genes DRD2 and ADH3 Genet Epidemiol 1999; 17 Suppl1: S379–S384

    Article  PubMed  Google Scholar 

  48. Curtis D, Sham PC . Population stratifications can cause false positive linkage results if founders are untyped Ann Hum Genet 1996; 60: 261–263

    Article  CAS  PubMed  Google Scholar 

  49. Risch N, Merikangas K . The future of genetic studies of complex human diseases Science 1996; 273: 1516–1517

    Article  CAS  PubMed  Google Scholar 

  50. Eaves IA, Bennett ST, Forster P, Ferber KM, Ehrmann D, Wilson AJ et al. Transmission ratio distortion at the INS-IGF2 VNTR Nature Genet 1999; 22: 324–325

    Article  CAS  PubMed  Google Scholar 

  51. O'Donovan MC, Owen MJ . Candidate-gene association studies of schizophrenia Am J Hum Genet 1999; 65: 587–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pliszka SR . Comorbidity of attention-deficit/hyperactivity disorder with psychiatric disorder: an overview J Clin Psychiatry 1998; 59 Suppl7: 50–58

    PubMed  Google Scholar 

  53. Sobell JL, Lind TJ, Sigurdson DC et al. The D5 dopamine receptor gene in schizophrenia: identification of a nonsense change and multiple missense changes but lack of association with disease Hum Mol Genet 1995; 4: 507–514

    Article  CAS  PubMed  Google Scholar 

  54. Asherson P, Mant R, Williams N et al. A study of chromosome 4p markers and dopamine D5 receptor gene in schizophrenia and bipolar disorder Mol Psychiatry 1998; 3: 310–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the European Molecular Biology Organisation (EMBO), the UK Medical Research Council (MRC), TUBITAK, and Eczacibasi Scientific Research and Award fund for their financial support. We also thank the families who participated in this research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahir, E., Yazgan, Y., Cirakoglu, B. et al. Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Mol Psychiatry 5, 396–404 (2000). https://doi.org/10.1038/sj.mp.4000744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000744

Keywords

This article is cited by

Search

Quick links