Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

MRD

TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse

Abstract

Using the multiplex PCR tubes of the BIOMED-2 Concerted Action, TCRB gene rearrangements were detected in 35% of childhood (n=161) and adult (n=172) precursor-B-ALL patients (Vβ–(Dβ)–Jβ in 25%; Dβ–Jβ in 15%). The presence of TCRB rearrangements showed a significant relation with age (highest frequency of 46% between 5 and 10 years of age) and the presence of TEL-AML1 transcripts, and was associated with relatively high frequencies of IGK-Kde, TCRG, and Vδ2-Jα rearrangements. In 62 out of 65 patients with Southern blot-detected Vβ–(Dβ)–Jβ and/or Dβ–Jβ rearrangements, at least one TCRB gene rearrangement was detected by PCR. Based on combined Southern blot and PCR analysis, oligoclonal TCRB gene rearrangements were observed in only 12% of patients. Analysis of paired diagnosis and relapse samples (n=26) showed that 20 out of 24 (83%) Vβ–(Dβ)–Jβ rearrangements and eight out of 14 (57%) Dβ–Jβ rearrangements remained stable. Using real-time quantitative PCR, a quantitative range 10−4 was obtained in 64% of TCRB gene rearrangements and in 86% of cases a sensitivity 10−4 was obtained. In conclusion, TCRB gene rearrangements occur in 35% of precursor-B-ALL patients and are relatively stable and sensitive PCR targets for detection of minimal residual disease, particularly if this concerns complete Vβ–(Dβ)–Jβ rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  Google Scholar 

  2. Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696.

    CAS  Google Scholar 

  3. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  Google Scholar 

  4. Panzer-Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H . Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000; 95: 790–794.

    CAS  Google Scholar 

  5. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 1998; 92: 4072–4079.

    CAS  Google Scholar 

  6. van der Velden VH, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJ et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487.

    Article  CAS  Google Scholar 

  7. Szczepanski T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417.

    Article  CAS  Google Scholar 

  8. Foroni L, Hoffbrand AV . Molecular analysis of minimal residual disease in adult acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 71–90.

    Article  CAS  Google Scholar 

  9. Szczepanski T, Flohr T, van der Velden VH, Bartram CR, van Dongen JJ . Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 37–57.

    Article  CAS  Google Scholar 

  10. Goulden N, Bader P, Van Der Velden V, Moppett J, Schilham M, Masden HO et al. Minimal residual disease prior to stem cell transplant for childhood acute lymphoblastic leukaemia. Br J Haematol 2003; 122: 24–29.

    Article  Google Scholar 

  11. Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 2002; 16: 1668–1672.

    Article  CAS  Google Scholar 

  12. Schrappe M . Risk-adapted therapy: lessons from childhood acute lymphoblastic leukemia. Hematol J 2002; 3: 127–132.

    Google Scholar 

  13. Pui CH, Campana D . New definition of remission in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 783–785.

    Article  CAS  Google Scholar 

  14. Hoelzer D, Gokbuget N, Ottmann O, Pui CH, Relling MV, Appelbaum FR et al. Acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2002, 162–192.

  15. Van Der Velden VH, Szczepanski T, Wijkhuijs JM, Hart PG, Hoogeveen PG, Hop WC et al. Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 2003; 17: 1834–1844.

    Article  CAS  Google Scholar 

  16. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12: 2006–2014.

    Article  CAS  Google Scholar 

  17. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  Google Scholar 

  18. Bruggemann M, Droese J, Bolz I, Luth P, Pott C, von Neuhoff N et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 2000; 14: 1419–1425.

    Article  CAS  Google Scholar 

  19. Donovan JW, Ladetto M, Zou G, Neuberg D, Poor C, Bowers D et al. Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood 2000; 95: 2651–2658.

    CAS  Google Scholar 

  20. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  Google Scholar 

  21. van der Velden VH, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  Google Scholar 

  22. Szczepanski T, van der Velden VH, van Dongen JJ . Real-time quantitative (RQ)-PCR for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Haematologica 2002; 87 (Suppl 1): 183–191.

    Google Scholar 

  23. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ . Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17: 1013–1034.

    Article  CAS  Google Scholar 

  24. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323.

    Article  CAS  Google Scholar 

  25. Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WC, Panzer-Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393.

    Article  CAS  Google Scholar 

  26. van Dongen JJ, Wolvers-Tettero IL . Analysis of immunoglobulin and T cell receptor genes. Part II: Possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta 1991; 198: 93–174.

    Article  CAS  Google Scholar 

  27. Felix CA, Poplack DG, Reaman GH, Steinberg SM, Cole DE, Taylor BJ et al. Characterization of immunoglobulin and T-cell receptor gene patterns in B-cell precursor acute lymphoblastic leukemia of childhood. J Clin Oncol 1990; 8: 431–442.

    Article  CAS  Google Scholar 

  28. Hara J, Benedict SH, Champagne E, Mak TW, Minden M, Gelfand EW . Relationship between rearrangement and transcription of the T-cell receptor alpha, beta, and gamma genes in B-precursor acute lymphoblastic leukemia. Blood 1989; 73: 500–508.

    CAS  PubMed  Google Scholar 

  29. Norton JD, Campana D, Hoffbrand AV, Janossy G, Couston-Smith E, Jani H et al. Correlation of immunophenotype with rearrangement of T cell antigen receptor beta and gamma genes in acute lymphoblastic leukemia of adults. Leukemia 1988; 2: 27–34.

    CAS  PubMed  Google Scholar 

  30. Goorha R, Bunin N, Mirro Jr J, Murphy SB, Cross AH, Behm FG et al. Provocative pattern of rearrangements of the genes for the gamma and beta chains of the T-cell receptor in human leukemias. Proc Natl Acad Sci USA 1987; 84: 4547–4551.

    Article  CAS  Google Scholar 

  31. Chen Z, Le Paslier D, Dausset J, Degos L, Flandrin G, Cohen D et al. Human T cell gamma genes are frequently rearranged in B-lineage acute lymphoblastic leukemias but not in chronic B cell proliferations. J Exp Med 1987; 165: 1000–1015.

    Article  CAS  Google Scholar 

  32. Szczepanski T, Beishuizen A, Pongers-Willemse MJ, Hahlen K, Van Wering ER, Wijkhuijs AJ et al. Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia 1999; 13: 196–205.

    Article  CAS  Google Scholar 

  33. Aisenberg AC, Wilkes BM, Jacobson JO . Different T-cell receptor gene configurations in T-cell neoplasms and acute lymphoblastic leukemia. Cancer Res 1991; 51: 6103–6109.

    CAS  PubMed  Google Scholar 

  34. Nuss R, Kitchingman G, Cross A, Zipf TF, Antoun GR, Bernstein I et al. T cell receptor gene rearrangements in B-precursor acute lymphoblastic leukemia correlate with age and the stage of B cell differentiation. Leukemia 1988; 2: 722–727.

    CAS  PubMed  Google Scholar 

  35. Nosaka T, Kita K, Miwa H, Kawakami K, Ikeda T, Ohno T et al. Cross-lineage gene rearrangements in human leukemic B-precursor cells occur frequently with V-DJ rearrangements of IgH genes. Blood 1989; 74: 361–368.

    CAS  PubMed  Google Scholar 

  36. Felix CA, Reaman GH, Korsmeyer SJ, Hollis GF, Dinndorf PA, Wright JJ et al. Immunoglobulin and T cell receptor gene configuration in acute lymphoblastic leukemia of infancy. Blood 1987; 70: 536–541.

    CAS  PubMed  Google Scholar 

  37. Dombret H, Loiseau P, Bories JC, Sigaux F . Unexpected consistent involvement of V beta gene segments in inappropriate T-cell receptor beta gene rearrangements occurring in B-lineage acute lymphoblastic leukemias. Blood 1992; 80: 2614–2621.

    CAS  PubMed  Google Scholar 

  38. Leber BF, Amlot P, Hoffbrand AV, Norton JD . T-cell receptor gene rearrangement in B-cell non-Hodgkin's lymphoma: correlation with methylation and expression. Leuk Res 1989; 13: 473–481.

    Article  CAS  Google Scholar 

  39. Tauchi T, Ohyashiki JH, Ohyashiki K, Saito M, Nakazawa S, Kimura N et al. Methylation status of T-cell receptor beta-chain gene in B precursor acute lymphoblastic leukemia: correlation with hypomethylation and gene rearrangement. Cancer Res 1991; 51: 2917–2921.

    CAS  PubMed  Google Scholar 

  40. Davey MP, Bongiovanni KF, Kaulfersch W, Quertermous T, Seidman JG, Hershfield MS et al. Immunoglobulin and T-cell receptor gene rearrangement and expression in human lymphoid leukemia cells at different stages of maturation. Proc Natl Acad Sci USA 1986; 83: 8759–8763.

    Article  CAS  Google Scholar 

  41. Rowen L, Koop BF, Hood L . The complete 685-kilobase DNA sequence of the human beta T cell receptor locus. Science 1996; 272: 1755–1762.

    Article  CAS  Google Scholar 

  42. Arden B, Clark SP, Kabelitz D, Mak TW . Human T-cell receptor variable gene segment families. Immunogenetics 1995; 42: 455–500.

    CAS  PubMed  Google Scholar 

  43. van Dongen JJM, Langerak AW, Bruggemann M, Evans PAS, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations. Leukemia 2003; 17: 2257–2317.

    Article  CAS  Google Scholar 

  44. Bruggemann M, van der Velden VHJ, Raff T, Droese J, Ritgen M, Pott C et al. Rearranged T-cell receptor beta genes represent powerful targets for quantification of minimal residual disease (MRD) in childhood and adult T-cell acute lymphoblastic leukemia (T-ALL). Leukemia 2004; 18: 709–719.

    Article  CAS  Google Scholar 

  45. Verhagen OJ, Wijkhuijs AJ, van der Sluijs-Gelling AJ, Szczepanski T, van der Linden-Schrever BE, Pongers-Willemse MJ et al. Suitable DNA isolation method for the detection of minimal residual disease by PCR techniques. Leukemia 1999; 13: 1298–1299.

    Article  CAS  Google Scholar 

  46. Szczepanski T, van der Velden VHJ, Raff T, Jacobs DCH, van Wering ER, Brüggemann M et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of secondary T-ALL. Leukemia 2003; 17: 2149–2156.

    Article  CAS  Google Scholar 

  47. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  Google Scholar 

  48. Szczepanski T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ . Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  Google Scholar 

  49. Szczepanski T, van der Velden VHJ, Hoogeveen PG, De Bie M, Jacobs DCH, Van Wering ER et al. Vδ2-Jα gene rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 2004; 103: 3798–3804.

    Article  CAS  Google Scholar 

  50. Lefranc MP . IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis. http://imgt.cines.fr. Leukemia 2003; 17: 260–266.

    Article  CAS  Google Scholar 

  51. Langerak AW, Wolvers-Tettero IL, van Dongen JJ . Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia 1999; 13: 965–974.

    Article  CAS  Google Scholar 

  52. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  Google Scholar 

  53. Droese J, Langerak AW, Groenen PJTA, Bruggemann M, Neumann P, Wolvers-Tettero IL et al. Validation of Biomed-2 multiplex PCR tubes for detection of TCRB gene rearrangements in T-cell malignancies. Leukemia 2004; 18: 1531–1538.

    Article  CAS  Google Scholar 

  54. Huebner S, Cazzaniga G, Flohr T, van der Velden VHJ, Konrad M, Basso G et al. High incidence and unique features of antigen receptor gene rearrangements in TEL-AML1 positive leukemias. Leukemia 2004; 18: 84–91.

    Article  CAS  Google Scholar 

  55. Fey MF, Tobler A, Stadelmann B, Hirt A, Theilkas L, Khandjian EW et al. Immunogenotyping with antigen receptor gene probes as a diagnostic tool in childhood acute lymphoblastic leukaemia. Eur J Haematol 1990; 45: 215–222.

    Article  CAS  Google Scholar 

  56. Dyer MJ . T-cell receptor delta/alpha rearrangements in lymphoid neoplasms. Blood 1989; 74: 1073–1083.

    CAS  PubMed  Google Scholar 

  57. Langerak AW, van Den Beemd R, Wolvers-Tettero IL, Boor PP, van Lochem EG, Hooijkaas H et al. Molecular and flow cytometric analysis of the Vbeta repertoire for clonality assessment in mature TCRalphabeta T-cell proliferations. Blood 2001; 98: 165–173.

    Article  CAS  Google Scholar 

  58. Beishuizen A, Verhoeven MA, van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ . Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 83: 2238–2247.

    CAS  Google Scholar 

  59. Li A, Zhou J, Zuckerman D, Rue M, Dalton V, Lyons C et al. Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection. Blood 2003; 102: 4520–4526.

    Article  CAS  Google Scholar 

  60. Germano G, del Giudice L, Palatron S, Giarin E, Cazzaniga G, Biondi A et al. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses. Consequences on minimal residual disease monitoring. Leukemia 2003; 17: 1573–1582.

    Article  CAS  Google Scholar 

  61. van Wering ER, van der Linden-Schrever BE, van der Velden VH, Szczepanski T, van Dongen JJ . T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia 2001; 15: 1301–1303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Bibi van Bodegom for secretarial assistance, Marieke Comans-Bitter for preparation of the figures, Sabine Hug and Regina Reutzel for providing clinical data, and Petra Chall, Petra Neumann, Frauke Hemken, and Heidrun Seppelt for their technical assistance. We thank Dr AW Langerak, Dr M van der Burg, and Dr MWJC Jansen for critically reviewing the manuscript. We thank the pediatric oncologists of the department of Pediatrics, Erasmus MC-Sophia, for the collection of samples at diagnosis and during follow-up. We acknowledge the Dutch Childhood Oncology Group and the German Multicenter ALL Study Group for kindly providing additional ALL cell samples. This study was supported by BIOMED-2 Concerted Action BMH4-CT98-3936 ‘PCR-based clonality studies for early diagnosis of lymphoproliferative disorders’, the Dutch Cancer Society/Koningin Wilhelmina Fonds (SNWLK 2000-2268), and the Wilhelm Sander-Stiftung (Grant 2001.074.1).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Velden, V., Brüggemann, M., Hoogeveen, P. et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 18, 1971–1980 (2004). https://doi.org/10.1038/sj.leu.2403505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403505

Keywords

This article is cited by

Search

Quick links