Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Centrosome replication, genomic instability and cancer

Abstract

Karyotypic alterations, including whole chromosome loss or gain, ploidy changes, and a variety of chromosome aberrations are common in cancer cells. If proliferating cells fail to coordinate centrosome duplication with DNA replication, this will inevitably lead to a change in ploidy, and the formation of monopolar or multipolar spindles will generally provoke abnormal segregation of chromosomes. Indeed, it has long been recognized that errors in the centrosome duplication cycle may be an important cause of aneuploidy and thus contribute to cancer formation. This view has recently received fresh impetus with the description of supernumerary centrosomes in almost all solid human tumors. As the primary microtubule organizing center of most eukaryotic cells, the centrosome assures symmetry and bipolarity of the cell division process, a function that is essential for accurate chromosome segregation. In addition, a growing body of evidence indicates that centrosomes might be imortant for initiating S phase and completing cytokinesis. Centrosomes undergo duplication precisely once before cell division. Recent reports have revealed that this process is linked to the cell division cycle via cyclin-dependent kinase (cdk) 2 activity that couples centriole duplication to the onset of DNA replication at the G1/S phase transition. Alterations in G1/S phase regulating proteins like the retinoblastoma protein, cyclins D and E, cdk4 and 6, cdk inhibitors p16INK4A and p15INK4B, and p53 are among the most frequent aberrations observed in human malignancies. These alterations might not only lead to unrestrained proliferation, but also cause karyotypic instability by uncontrolled centrosome replication. Since several excellent reports on cell cycle regulation and cancer have been published, this review will focus on the role of centrosomes in cell cycle progression, as well as causes and consequences of aberrant centrosome replication in human neoplasias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Boveri T . Zur Frage der Entstehung maligner Tumoren Fischer-Verlag: Jena 1914

    Google Scholar 

  2. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers Nature 1998 396: 643–649

    Article  CAS  PubMed  Google Scholar 

  3. Mitelman F, Johansson B, Mertens F . Catalog of Chromosome Aberrations in Cancer, Vol. 2 Wiley-Liss: New York 1994

    Google Scholar 

  4. Heim S, Mitelman F . Cancer Cytogenetics Wiley-Liss: New York 1995

    Google Scholar 

  5. Sen S . Aneuploidy and cancer Curr Opin Oncol 2000 12: 82–88

    Article  CAS  PubMed  Google Scholar 

  6. Lengauer C, Kinzler KW, Vogelstein B . Genetic instability in colorectal cancers Nature 1997 386: 623–627

    Article  CAS  PubMed  Google Scholar 

  7. Sudbo J, Kildal W, Risberg B, Koppang HS, Danielsen HE, Reith A . DNA content as a prognostic marker in patients with oral leukoplakia New Engl J Med 2001 344: 1270–1278

    Article  CAS  PubMed  Google Scholar 

  8. Bulten J, Poddighe PJ, Robben JC, Gemmink JH, de Wilde PC, Hanselaar GAGJM . Interphase cytogenetic analysis of cervical intraepithelial neoplasia Am J Pathol 1998 152: 495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bardi G, Parada LA, Bomme L, Pandis N, Willen R, Johansson B, Jeppsson B, Beroukas K, Heim S, Mitelman F . Cytogenetic comparisons of synchronous carcinomas and polyps in patients with colorectal cancer Br J Cancer 1997 76: 765–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, Heim S . Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors Cancer Genet Cytogenet 1998 106: 66–71

    Article  CAS  PubMed  Google Scholar 

  11. Silverstein MJ . Ductal Carcinoma In Situ of the Breast Williams & Wilkins: Baltimore 1997

    Google Scholar 

  12. Lindberg JO, Stenling RB, Rutegard JN . DNA aneuploidy as a marker of permalignancy in surveillance of patients with ulcerative colitis Br J Surg 1999 86: 947–950

    Article  CAS  PubMed  Google Scholar 

  13. Barrett MT, Sanchez CA, Prevo LJ, Wong DJ, Galipeau PC, Paulson TG, Rabinovitch PS, Reid BJ . Evolution of neoplastic cell lineages in Barrett oesophagus Nat Genet 1999 22: 106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li R, Yerganian G, Duesberg P, Krämer A, Willer A, Rausch C, Hehlmann R . Aneuploidy correlated 100% with chemical transformation of Chinese hamster cells Proc Natl Acad Sci USA 1997 94: 14506–14511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu P, Zhang H, McLellan A, Vogel H, Bradley A . Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11 Genetics 1998 150: 1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasaki O, Kido K, Nagahama S . DNA ploidy, Ki-67 and p53 as indicators of lymph node metastasis in early gastric carcinoma Anal Quant Cytol Histol 1999 21: 85–88

    CAS  PubMed  Google Scholar 

  17. Sturgis CD, Caraway NP, Johnston DA, Sherman SI, Kidd L, Katz RL . Image analysis of papillary thyroid carcinoma fine-needle aspirates: significant association between aneuploidy and death from disease Cancer 1999 87: 155–160

    Article  CAS  PubMed  Google Scholar 

  18. Abad M, Ciudad J, Rincon MR, Silva I, Paz-Bouza JI, Lopez A, Alonso AG, Bullon A, Orfao A . DNA aneuploidy by flow cytometry is an independent prognostic factor in gastric cancer Anal Cell Pathol 1998 16: 223–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Magennis DP . Nuclear DNA in histological and cytological specimens: measurement and prognostic significance Br J Biomed Sci 1997 54: 140–148

    CAS  PubMed  Google Scholar 

  20. Flechter JA . Renal and bladder cancers. In: Wolman SR, Sell S, Totowa NJ (eds) Human Cytogenetic Cancer Markers Humana Press: Totowa 1997 169–202

    Google Scholar 

  21. Zhuang Z, Park WS, Pack S, Schmidt L, Vortmeyer AO, Pak E, Pham T, Weil RJ, Candidus S, Lubensky IA, Linehan WM, Zbar B, Weirich G . Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas Nat Genet 1998 20: 66–69

    Article  CAS  PubMed  Google Scholar 

  22. Löwenberg B, Downing JR, Burnett A . Acute myeloid leukemia N Engl J Med 1999 341: 1051–1062

    Article  PubMed  Google Scholar 

  23. Duesberg P, Rausch C, Rasnick D, Hehlmann R . Genetic instability of cancer cells is proportional to their degree of aneuploidy Proc Natl Acad Sci USA 1998 95: 13692–13697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zou H, McGarry TJ, Bernal T, Kirschner MW . Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis Science 1999 285: 418–422

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC . Control of apoptosis and mitotic spindle checkpoint by survivin Nature 1998 396: 580–584

    Article  CAS  PubMed  Google Scholar 

  26. Orr-Weaver TL, Weinberg RA . A checkpoint on the road to cancer Nature 1998 392: 223–224

    Article  CAS  PubMed  Google Scholar 

  27. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JKV, Markowitz SD, Kinzler KW, Vogelstein B . Mutations of mitotic checkpoint genes in human cancers Nature 1998 392: 300–303

    Article  CAS  PubMed  Google Scholar 

  28. Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS . A role for adenomatous polyposis coli protein in chromosome segregation Nat Cell Biol 2001 3: 429–432

    Article  CAS  PubMed  Google Scholar 

  29. Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H . Mutations in the APC tumour suppressor gene cause chromosomal instability Nat Cell Biol 2001 3: 433–438

    Article  CAS  PubMed  Google Scholar 

  30. Jin DY, Spencer F, Jeang KT . Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1 Cell 1998 33: 81–91

    Article  Google Scholar 

  31. Flemming W . Studien über die Entwicklungsgeschichte der Najaden Sitzungber Akad Wissensch Wien 1875 71: 81–147

    Google Scholar 

  32. Boveri T . Zellen-Studien: Über die Natur der Centrosomen Fischer: Jena 1900

    Google Scholar 

  33. Brinkley BR . Microtubule organizing centers Ann Rev Cell Biol 1985 1: 145–172

    Article  CAS  PubMed  Google Scholar 

  34. Tassin AM, Bornens M . Centrosome structure and microtubule nucleation in animal cells Biol Cell 1999 91: 343–354

    Article  CAS  PubMed  Google Scholar 

  35. Vorobjev IA, Nadezhdina ES . The centrosome and its role in the organization of microtubules Int Rev Cytol 1987 106: 227–293

    Article  CAS  PubMed  Google Scholar 

  36. Mack GJ, Ou Y, Rattner JB . Integrating centrosome structure with protein composition and function in animal cells Microsc Res Tech 2000 49: 409–419

    Article  CAS  PubMed  Google Scholar 

  37. Urbani L, Stearns T . The centrosome Curr Biol 1999 9: R315–R317

    Article  CAS  PubMed  Google Scholar 

  38. Doxsey S . Re-evaluating centrosome function Nature Rev 2001 2: 688–698

    Article  CAS  Google Scholar 

  39. Karsenti E, Maro B . Centrosomes and the spatial distribution of microtubules in animal cells TIBS 1986 11: 460–463

    Google Scholar 

  40. Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Edde B, Bornens M . Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells J Cell Biol 1998 143: 1575–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sluder G, Rieder CL . Centriole number and the reproductive capacity of spindle poles J Cell Biol 1985 100: 887–896

    Article  CAS  PubMed  Google Scholar 

  42. Sluder G, Miller FJ, Rieder CL . Reproductive capacity of sea urchin centrosomes without centrioles Cell Motil Cytoskelet 1989 13: 264–273

    Article  CAS  Google Scholar 

  43. Moritz M, Braunfeld MB, Sedat JW, Alberts B, Agard DA . Microtubule nucleation by γ-tubulin-containing rings in the centrosome Nature 1995 378: 638–640

    Article  CAS  PubMed  Google Scholar 

  44. Murphy SM, Urbani L, Stearns T . The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p J Cell Biol 1998 141: 663–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dictenberg JB, Zimmerman W, Sparks CA, Young A, Vidair C, Zheng Y, Carrington W, Fay FS, Doxsey SJ . Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome J Cell Biol 1998 141: 163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M . Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein J Cell Sci 2000 113: 3013–3023

    Article  CAS  PubMed  Google Scholar 

  47. Piel M, Meyer P, Khodjakov A, Rieder CL, Bornens M . The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells J Cell Biol 2000 149: 317–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Compton DA . Spindle assembly in animal cells Ann Rev Biochem 2000 69: 95–114

    Article  CAS  PubMed  Google Scholar 

  49. Megraw TL, Kao LR, Kaufman TC . Zygotic development without functional mitotic centrosomes Curr Biol 2001 11: 116–120

    Article  CAS  PubMed  Google Scholar 

  50. Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G . Requirement of a centrosomal activity for cell cycle progression through G1 into S phase Science 2001 291: 1547–1550

    Article  CAS  PubMed  Google Scholar 

  51. Khodjakow A, Cole RW, Oakley BR, Rieder CL . Centrosome-independent mitotic spindle formation in vertebrates Curr Biol 2000 10: 59–67

    Article  Google Scholar 

  52. Piel M, Nordberg J, Euteneuer U, Bornens M . Centrosome-dependent exit of cytokinesis in animal cells Science 2001 291: 1550–1553

    Article  CAS  PubMed  Google Scholar 

  53. Doxsey SJ . Centrosomes as command centres for cellular control Nature Cell Biol 2001 3: E105–E108

    Article  CAS  PubMed  Google Scholar 

  54. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . Tetraploid state induces p53-dependent arrest of nontransformed mammalian cell in G1 Mol Biol Cell 2001 12: 1315–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kellogg DR, Moritz M, Alberts BM . The centrosome and cellular organization Annu Rev Biochem 1994 63: 639–674

    Article  CAS  PubMed  Google Scholar 

  56. Kochanski RS, Borisy GG . Mode of centriole duplication and distribution J Cell Biol 1990 110: 1599–1605

    Article  CAS  PubMed  Google Scholar 

  57. Kuriyama R, Borisy GG . Centriole cycle in Chinese hamster ovary cells as determined by whole-mountelectron microscopy J Cell Biol 1981 91: 814–821

    Article  CAS  PubMed  Google Scholar 

  58. Rieder CL, Borisy GG . The centrosome cycle in PTK2 cells: asymmetric distribution and structural changes in the pericentriolar material Biol Cell 1982 44: 117–132

    Google Scholar 

  59. Vorobjev IA, Chentsov YS . Centrioles in the cell cycle. I. Epithelial cells J Cell Biol 1982 98: 938–949

    Article  Google Scholar 

  60. Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR . Dissociation of centrosome replication events from DNA synthesis and mitotic division in hydroxyurea arrested Chinese hamster ovary cells J Cell Biol 1995 130: 105–115

    Article  CAS  PubMed  Google Scholar 

  61. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G . Requirement of cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts Science 1999 283: 851–854

    Article  CAS  PubMed  Google Scholar 

  62. Lacey KR, Jackson PK, Stearns T . Cyclin-dependent kinase control of centrosome duplication Proc Natl Acad Sci USA 1999 96: 2817–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsumoto Y, Hayashi K, Nishida E . Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells Curr Biol 1999 9: 429–432

    Article  CAS  PubMed  Google Scholar 

  64. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA . Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-Cyclin A Nature Cell Biol 1999 1: 88–93

    Article  CAS  PubMed  Google Scholar 

  65. Hartley RS, Sible JC, Lewellyn, Maller JL . A role for cyclin E/cdk2 in the timing of the midblastula transition in Xenopus embryos Dev Biol 1997 188: 312–321

    Article  CAS  PubMed  Google Scholar 

  66. Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF . Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation Cell 1994 77: 107–120

    Article  CAS  PubMed  Google Scholar 

  67. Sluder G, Miller FJ, Cole R, Rieder CL . Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control J Cell Biol 1990 110: 2025–2032

    Article  CAS  PubMed  Google Scholar 

  68. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan P-K, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K . Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication Cell 2000 103: 127–140

    Article  CAS  PubMed  Google Scholar 

  69. Fisk HA, Winey M . The mouse mps1p-like kinase regulates centrosome duplication Cell 2001 106: 95–104

    Article  CAS  PubMed  Google Scholar 

  70. Fry AM, Meraldi P, Nigg EA . A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cylce regulators EMBO J 1998 17: 470–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mayor T, Stierhof YD, Tanaka K, Fry AM, Nigg EA . The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion J Cell Biol 2000 151: 837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fukasawa K, Choi T, Kuriyama R, Rulong S, Van de Woude GF . Abnormal centrosome amplification in the absence of p53 Science 1996 271: 1744–1747

    Article  CAS  PubMed  Google Scholar 

  73. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K . Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway Oncogene 2001 20: 3173–3184

    Article  CAS  PubMed  Google Scholar 

  74. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S . Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation Nature Genet 1998 20: 189–193

    Article  CAS  PubMed  Google Scholar 

  75. Nigg EA . Mitotic kinases as regulators of cell division and its checkpoints Nat Rev Mol Cell Biol 2001 2: 21–21

    Article  CAS  PubMed  Google Scholar 

  76. O'Connell KF, Caron C, Kopish KR, Hurd DD, Kemphues KJ, Li Y, White JG . The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo Cell 2001 105: 547–558

    Article  CAS  PubMed  Google Scholar 

  77. Freed E, Lacey KR, Huie P, Lyapina SA, Deshaies RJ, Stearns T, Jackson PK . Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle Genes Dev 1999 13: 2242–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wojcik EJ, Glover DM, Hays TS . The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila Curr Biol 2000 10: 1131–1134

    Article  CAS  PubMed  Google Scholar 

  79. Nakayama K, Nagahama H, Minamishima YA, Matsumoto M, Nakamichi I, Kitagawa K, Shirane M, Tsunematsu R, Tsukiyama T, Ishida N, Kitagawa M, Nakayama K, Hatakeyama S . Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication EMBO J 2000 19: 2069–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li J, Xu M, Zhou H, Ma J, Potter H . Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation Cell 1997 90: 917–927

    Article  CAS  PubMed  Google Scholar 

  81. Sathasivam K, Woodman B, Mahal A, Bertaux F, Wanker EE, Shima DT, Bates GP . Centrosome disorganization in fibroblast cultures derived from R6/2 Huntington's disease (HD) transgenic mice and HD patients Hum Mol Genet 2001 10: 2425–2435

    Article  CAS  PubMed  Google Scholar 

  82. Gavanescu I, Vazquez-Abad D, McCauley J, Senecal JL, Doxsey S . Centrosome proteins: a major class of autoantigens in scleroderma J Clin Immunol 1999 19: 166–171

    Article  CAS  PubMed  Google Scholar 

  83. Ploubidou A, Moreau V, Ashman K, Reckmann I, Gonzalez C, Way M . Vaccinia virus infection disrupts microtubule organization and centrosome function EMBO J 2000 19: 3932–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Minemoto Y, Shimura M, Ishizaka Y, Masamune Y, Yamashita K . Multiple centrosome formation induced by the expression of Vpr gene of human immunodeficiency virus Biochem Biophys Res Commun 1999 258: 379–384

    Article  CAS  PubMed  Google Scholar 

  85. Cimolai N, Mah D, Roland E . Anticentriolar autoantibodies in children with central nervous system manifestations of Mycoplasma pneumoniae infection J Neurol Neurosurg Psychiatry 1994 57: 638–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schatten H, Chakrabarti A, Hedrick J . Centrosome and microtubule instability in aging Drosophila cells J Cell Biochem 1999 74: 229–241

    Article  CAS  PubMed  Google Scholar 

  87. Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, Nakamura Y, White R . Allelotype of colorectal carcinomas Science 1989 244: 207–211

    Article  CAS  PubMed  Google Scholar 

  88. Weber RG, Bridger JM, Benner A, Weisenberger D, Ehemann V, Reifenberger G, Lichter P . Centrosome amplification as a possible mechanism for numerical chromosome aberrations incerebral primitive neuroectodermal tumors with TP53 mutations Cytogenet Cell Genet 1998 83: 266–269

    Article  CAS  PubMed  Google Scholar 

  89. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ . Centrosome defects and genetic instability in malignant tumors Cancer Res 1998 58: 3974–3985

    CAS  PubMed  Google Scholar 

  90. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL . Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity Proc Natl Acad Sci USA 1998 95: 2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lingle WL, Salisbury JL . Altered centrosome structure is associated with abnormal mitoses in human breast tumors Am J Pathol 1999 155: 1941–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schneeweiss A, Sinn H-P, Ehemann V, Khbeis T, Neben K, Lichter P, Krause U, Ho AD, Bastert G, Krämer A . Centrosome aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression (submitted for publication)

  93. Sato N, Mizumoto K, Nakamura M, Nakamura K, Kusumoto M, Niiyama H, Ogawa T, Tanaka M . Centrosome abnormalities in pancreatic ductal carcinoma Clin Cancer Res 1999 5: 963–970

    CAS  PubMed  Google Scholar 

  94. Kuo K-K, Sato N, Mizumoto K, Maehara N, Yonemasu H, Ker C-G, Sheen P-C, Tanaka M . Centrosome abnormalities in human carcinomas of the gallbladder and intrahepatic and extrahepatic bile ducts Hepatology 2000 31: 59–64

    Article  CAS  PubMed  Google Scholar 

  95. Gustafson LM, Gleich LL, Fukasawa K, Chadwell J, Miller MA, Stambrook PJ, Gluckmann JL . Centrosome hyperamplification in head and neck squamous cell carcinoma: a potential phenotypic marker of tumor aggressiveness Laryngoscope 2000 110: 1798–1801

    Article  CAS  PubMed  Google Scholar 

  96. Krämer A, Schweizer S, Neben K, Lichter P, Krause U, Giesecke C, Kalla J, Müller-Hermelink HK, Ho AD, Ott G . Centrosome aberrations as a possible mechanism for chromosomal instability in non-Hodgkin's lymphoma (submitted for publication)

  97. Neben K, Giesecke C, Lichter P, Ho AD, Krämer A . Centrosome aberrations in acute myeloid leukemia are correlated to cytogenetic risk classification (in preparation)

  98. Salisbury JL, Lingle WL, White RA, Cordes LEM, Barrett S . Microtubule nucleating capacity of centrosomes in tissue sections J Histochem Cytochem 1999 47: 1265–1273

    Article  CAS  PubMed  Google Scholar 

  99. Salisbury JL, Whitehead CM, Lingle WL, Barrett S . Centrosomes and cancer Biol Cell 1999 91: 451–460

    Article  CAS  PubMed  Google Scholar 

  100. Brinkley BR . Managing the centrosome numbers game: from chaos to stability in cancer cell division Trends Cell Biol 2001 11: 18–21

    Article  CAS  PubMed  Google Scholar 

  101. Duensing S, Duensing A, Crum CP, Münger K . Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype Cancer Res 2001 61: 2356–2360

    CAS  PubMed  Google Scholar 

  102. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Münger K . The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle Proc Natl Acad Sci USA 2000 97: 10002–10007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ . Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer Proc Natl Acad Sci USA 1991 88: 6427–6431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pihan G, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ . Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression Cancer Res 2001 61: 2212–2219

    CAS  PubMed  Google Scholar 

  105. Shono M, Sato N, Mizumoto K, Maehara N, Nakamura M, Nagai E, Tanaka M . Stepwise progression of centrosome defects associated with local tumor growth and metastatic process of human pancreatic carcinoma cells transplanted orthotopically into nude mice Lab Invest 2001 81: 945–952

    Article  CAS  PubMed  Google Scholar 

  106. Ghadimi BM, Sackett DL, Difilippantonio MJ, Schröck E, Neumann T, Jauho A, Auer G, Ried T . Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations Genes Chromosomes Cancer 2000 27: 183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mantel CR, Braun SE, Lee Y, Kim Y-J, Broxmeyer HE . The interphase microtubule damage checkpoint defines an S-phase commitment point and does not require p21waf-1 Blood 2001 97: 1505–1507

    Article  CAS  PubMed  Google Scholar 

  108. Vitrat N, Cohen-Solal K, Pique C, Le Couedic JP, Norol F, Larsen AK, Katz A, Vainchenker W, Debili N . Endomitosis of human megakaryocytes are due to abortive mitosis Blood 1998 91: 3711–3723

    Article  CAS  PubMed  Google Scholar 

  109. García P, Calés C . Endoreplication in megakaryoblastic cell lines is accompanied by sustained expression of G1/S cyclins and downregulation of cdc25C Oncogene 1996 13: 695–703

    PubMed  Google Scholar 

  110. Zimmet JM, Ladd D, Jackson CW, Stenberg PE, Ravid K . A role for cyclin D3 in the endomitotic cell cycle Mol Cell Biol 1997 17: 7248–7259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Roy L, Coulin P, Vitrat N, Hellio R, Debili N, Weinstein J, Bernheim A, Vainchenker W . Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes Blood 2001 97: 2238–2247

    Article  CAS  PubMed  Google Scholar 

  112. Haase SB, Winey M, Reed SI . Multi-step control of spindle pole body duplication by cyclin-dependent kinase Nature Cell Biol 2001 3: 38–42

    Article  CAS  PubMed  Google Scholar 

  113. Spruck CH, Won K-A, Reed SI . Deregulated cyclin E induces chromosome instability Nature 1999 401: 297–300

    Article  CAS  PubMed  Google Scholar 

  114. Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K . Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression Oncogene 2000 19: 1635–1646

    Article  CAS  PubMed  Google Scholar 

  115. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Münger K . Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes J Virol 2001 75: 7712–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Baccini V, Roy L, Vitrat N, Chagraoui H, Sabri S, Le Couedic J-P, Debili N, Wendling F, Vainchenker W . Role of p21Cip1/Waf1 in cell-cycle exit of endomitotic megakaryocytes Blood 2001 98: 3274–3282

    Article  CAS  PubMed  Google Scholar 

  117. Carroll PE, Okuda M, Horn HF, Biddinger P, Stambrook PJ, Gleich LL, Li Y-Q, Tarapore P, Kukasawa K . Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression Oncogene 1999 18: 1935–1944

    Article  CAS  PubMed  Google Scholar 

  118. Chiba S, Okuda M, Mussman JG, Fukasawa K . Genomic convergence and suppression of centrosome hyperamplification in primary p53−/− cells in prolonged culture Exp Cell Res 2000 258: 310–321

    Article  CAS  PubMed  Google Scholar 

  119. Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G, Broxmeyer HE . p21cip-1/waf-1 deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells Blood 1999 93: 1390–1398

    Article  CAS  PubMed  Google Scholar 

  120. Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang X-W, Harris CC, Ried T, Deng C-X . Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells Molec Cell 1999 3: 389–395

    Article  CAS  PubMed  Google Scholar 

  121. Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A . Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification Curr Biol 1999 9: 1107–1110

    Article  CAS  PubMed  Google Scholar 

  122. Brodie S, Deng C . BRCA1-associated tumorigenesis: what have we learned from knockout mice? Trends Genet 2001 17: S18–S22

    Article  CAS  PubMed  Google Scholar 

  123. Savelyeva L, Claas A, Matzner I, Schlag P, Hofmann V, Scherneck S, Weber B, Schwab M . Constitutional genomic instability with inversions, duplications, and amplifications in 9p23–24 in BRCA2 mutation carriers Cancer Res 2001 61: 5179–5185

    CAS  PubMed  Google Scholar 

  124. Hsu L-C, Doan TP, White RL . Identification of a γ-tubulin-binding domain in BRCA1 Cancer Res 2001 61: 7713–7718

    CAS  PubMed  Google Scholar 

  125. Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y . Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast Cancer Res 1999 59: 2041–2044

    CAS  PubMed  Google Scholar 

  126. Griffin CS, Simpson PJ, Wilson CR, Thacker J . Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation Nat Cell Biol 2000 2: 757–761

    Article  CAS  PubMed  Google Scholar 

  127. Lange BM, Gull K . Structure and function of the centriole in animal cells: progress and questions Trends Cell Biol 1996 6: 348–352

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, A., Neben, K. & Ho, A. Centrosome replication, genomic instability and cancer. Leukemia 16, 767–775 (2002). https://doi.org/10.1038/sj.leu.2402454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402454

Keywords

This article is cited by

Search

Quick links