Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Debate
  • Published:

The gender insulin hypothesis: why girls are born lighter than boys, and the implications for insulin resistance

Abstract

Girls are born lighter than boys. The consistency of this observation across different populations is striking, suggesting that it may have fundamental significance for those conditions linked with lower birth weight, such as diabetes. Previous hypotheses relating low birth weight to subsequent diabetes have addressed differences in insulin resistance within the sexes, not between them. Here, we propose that gender-specific genes affecting insulin sensitivity are responsible for the gender difference in birth weight – the genetically more insulin resistant female fetus is less responsive to the trophic effects of insulin and is therefore smaller. These genes also render female subjects more susceptible to diabetes, explaining why reports of type 2 diabetes (T2D) in younger populations show a female preponderance. Consistent with our proposal, concentrations of insulin and/or its propeptides are higher at birth in female populations and they are intrinsically more insulin resistant throughout life, with attendant impact on their metabolism, and the regressions describing the relationship between insulin resistance and adiposity in female and male subjects have similar gradients, but different constants. These gender-specific genes have a demonstrable impact on fetal growth and insulin resistance. Diabetes and cardiovascular disease are thought to be driven by insulin resistance, and the observations reported here may help to focus the search for genes that control it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Alexander GR, Kogan MD, Himes JH . 1994–1996 U.S. singleton birth weight percentiles for gestational age by race, Hispanic origin, and gender. Matern Child Health J 1999; 3: 225–231.

    Article  CAS  Google Scholar 

  2. Barker DJP . The Wellcome Foundation Lecture, 1994. The fetal origins of adult disease. Proc R Soc Lond B Biol Sci 1995; 262: 37–43.

    Article  CAS  Google Scholar 

  3. Hattersley AT, Tooke JE . The fetal insulin hypothesis: an alternative explanation of the association of low birth weight with diabetes and vascular disease. Lancet 1999; 353: 1789–1792.

    Article  CAS  Google Scholar 

  4. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S . Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 1998; 19: 268–270.

    Article  CAS  Google Scholar 

  5. Yajnik CS, Coyaji KJ, Joglekar CV, Kellingray S, Fall C . Paternal insulin resistance and fetal growth: problem for the ‘fetal insulin’ and ‘fetal origins’ hypotheses. Diabetologia 2001; 44: 1197–1198.

    Article  CAS  Google Scholar 

  6. Jeffery AN, Voss LD, Metcalf BS, Mallam K, Kirkby J, Murphy MJ et al. Testing hypotheses for insulin resistance in contemporary children: The EarlyBird Study (Abstract). Diabet Med 2002; 19 (Suppl 2): 78.

    Google Scholar 

  7. Lawlor DA, Davey Smith G, Ebrahim S . Birth weight of offspring and insulin resistance in late adulthood: cross sectional survey. Brit Med J 2002; 325: 359–363.

    Article  Google Scholar 

  8. Wannamathee SG, Lawlor DA, Whincup PH, Walker M, Ebrahim S, Davey-Smith G . Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood: cross sectional survey. Diabetologia 2004; 47: 12–18.

    Article  Google Scholar 

  9. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  CAS  Google Scholar 

  10. Gungor N, Saad R, Janosky J, Arslanian S . Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Pediatr 2004; 144: 47–55.

    Article  CAS  Google Scholar 

  11. Godfrey KM, Robinson S, Hales CN, Barker DJP, Osmond C, Taylor KP . Nutrition in pregnancy and the concentrations of proinsulin, 32–33 split proinsulin, insulin and C-peptide in cord plasma. Diabet Med 1996; 13: 868–873.

    Article  CAS  Google Scholar 

  12. Godfrey KM, Hales CN, Osmond C, Barker DJP, Taylor KP . Relation of cord plasma concentrations of proinsulin, 32–33 split proinsulin, insulin and C-peptide to placental weight and the baby's size and proportions at birth. Early Hum Dev 1996; 46: 129–140.

    Article  CAS  Google Scholar 

  13. Shields BM, Shakespeare L, Butter NL, Knight B, Turner T, McCammon K et al. The determinants of insulin concentrations in 1-week-old healthy babies (Abstract). Diabetic Med 2002; 19 (Suppl 2): 73–74.

    Google Scholar 

  14. Lindsay RS, Walker JD, Halsall I, Hales CN, Calder AA, Hamilton BA et al. Insulin and insulin propeptides at birth in offspring of diabetic mothers. J Clin Endocrinol Metab 2003; 88: 1664–1671.

    Article  CAS  Google Scholar 

  15. Travers SH, Jeffers BW, Bloch CA, Hill JO, Eckel RH . Gender and Tanner stage differences in body composition and insulin sensitivity in early pubertal children. J Clin Endocrinol Metab 1995; 80: 172–178.

    CAS  Google Scholar 

  16. Batey LS, Goff DC, Tortolero SR, Nichaman MZ, Chan W, Chan FA et al. Summary measures of the insulin resistance syndrome are adverse among Mexican-Amercian versus non-Hispanic white children. Circulation 1997; 96: 4319–4325.

    Article  CAS  Google Scholar 

  17. Arslanian S, Suprasongsin C, Janosky JE . Insulin secretion and sensitivity in black versus white prepubertal healthy children. J Clin Endocrinol Metab 1997; 82: 1923–1927.

    CAS  PubMed  Google Scholar 

  18. Moran A, Jacobs DR, Steinberger J, Hong CP, Prineas R, Luepker R et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes 1999; 48: 2039–2044.

    Article  CAS  Google Scholar 

  19. Chu NF, Wang DJ, Shieh SM, Rimm EB . Plasma leptin concentrations and obesity in relation to insulin resistance syndrome components among school children in Taiwan – the Taipei Children Heart Study. Int J Obes Relat Metab Disord 2000; 24: 1265–1271.

    Article  CAS  Google Scholar 

  20. Young-Hyman D, Schlundt DG, Herman L, De Luca F, Counts D . Evaluation of the insulin resistance syndrome in 5- to 10-year-old overweight/obese African-American children. Diabetes Care 2001; 24: 1359–1364.

    Article  CAS  Google Scholar 

  21. Sinaiko AR, Jacobs DR, Steinberger J, Moran A, Luepker R, Rocchini AP et al. Insulin resistance syndrome in childhood: associations of the euglycemic insulin clamp and fasting insulin with fatness and other risk factors. J Pediatr 2001; 139: 700–707.

    Article  CAS  Google Scholar 

  22. Allard P, Delvin EE, Paradis G, Hanley JA, O'Loughlin J, Lavallée C et al. Distribution of fasting plasma insulin, free fatty acids, and glucose concentrations and of homeostasis model assessment of insulin resistance in a representative sample of Quebec children and adolescents. Clin Chem 2003; 49: 644–649.

    Article  CAS  Google Scholar 

  23. Ong KK, Petry CJ, Emmett PM, Sandhu MS, Kiess W, Hales CN et al. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth and plasma insulin-like growth factor-1 level. Diabetologia 2004; 47: 1064–1070.

    CAS  PubMed  Google Scholar 

  24. Murphy MJ, Metcalf BS, Voss LD, Jeffery AN, Kirkby J, Mallam KM et al. Girls at five are intrinsically more insulin resistant than boys: the programming hypotheses revisited. The EarlyBird Study. Pediatrics 2004; 113: 82–86.

    Article  Google Scholar 

  25. Wilkin TJ, Voss LD, Metcalf BS, Mallam K, Jeffery AN, Alba S et al. Metabolic risk in early childhood: the EarlyBird study. Int J Obes Relat Metab Disord 2004; 28: S64–S69.

    Article  CAS  Google Scholar 

  26. Voss LD, Kirkby J, Metcalf BS, Jeffery AN, O'Riordan C, Murphy MJ et al. Preventable factors in childhood that lead to insulin resistance, diabetes mellitus and the metabolic syndrome: the EarlyBird diabetes study 1. J Pediatr Endocrinol Metab 2003; 16: 1211–1224.

    Article  Google Scholar 

  27. Williams JW, Zimmett PZ, Shaw JE, de Courten MP, Cameron AJ, Chitson P et al. Gender differences in the prevalence of impaired fasting glycaemia and impaired glucose tolerance in Mauritius. Does sex matter? Diabet Med 2003; 20: 915–920.

    Article  CAS  Google Scholar 

  28. Westerbacka J, Corner A, Tiikkainen M, Tamminen M, Vehkavaara S, Hakkinen AM et al. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia 2004; 47: 1360–1369.

    Article  CAS  Google Scholar 

  29. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW et al. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 2004; 350: 2549–2557.

    Article  CAS  Google Scholar 

  30. Dean HJ, Mundy RL, Moffatt M . Non-insulin-dependent diabetes mellitus in Indian children in Manitoba. Can Med Assoc J 1994; 147: 52–57.

    Google Scholar 

  31. Kitagawa T, Owada M, Urakami T, Tajima N . Epidemiology of type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in Japanese children. Diabetes Res Clin Pract 1994; 24: S7–S13.

    Article  Google Scholar 

  32. Harris SB, Perkins BA, Whalen-Brough E . Non-insulin-dependent diabetes mellitus among First Nations children: new entity among First Nations people of northwestern Ontario. Can Fam Physician 1996; 42: 869–876.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pinhas-Hamiel O, Dolan LM, Daniels SR, Standiford D, Khoury PR, Zeitler P . Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J Pediatr 1996; 128: 608–615.

    Article  CAS  Google Scholar 

  34. Kadiki OA, Reddy MR, Marzouk AA . Incidence of insulin-dependent diabetes (IDDM) and non-insulin-dependent diabetes (NIDDM) (0–34 years onset) in Benghazi, Libya. Diabetes Res Clin Pract 1996; 32: 165–173.

    Article  CAS  Google Scholar 

  35. Freedman DS, Serdula MK, Percy CA, Ballew C, White L . Obesity, levels of lipids and glucose, and smoking among Navajo adolescents. J Nutr 1997; 127: 2120S–2127S.

    Article  CAS  Google Scholar 

  36. Scott CR, Smith JM, Cradock MM, Pihoker C . Characteristics of youth-onset noninsulin-dependent diabetes mellitus and insulin-dependent diabetes mellitus at diagnosis. Pediatrics 1997; 100: 84–91.

    Article  CAS  Google Scholar 

  37. Dabelea D, Hanson RL, Bennett PH, Roumain J, Knowler WC, Pettitt DJ . Increasing prevalence of type II diabetes in American Indian children. Diabetologia 1998; 41: 904–910.

    Article  CAS  Google Scholar 

  38. Glaser NS, Jones KL . Non-insulin-dependent diabetes mellitus in Mexican-American children. West J Med 1998; 168: 11–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ehtisham S, Barrett TG, Shaw NJ . Type 2 diabetes mellitus in UK children – an emerging problem. Diabet Med 2000; 17: 867–871.

    Article  CAS  Google Scholar 

  40. Drake AJ, Smith A, Betts PR, Crowne EC, Shield JP . Type 2 diabetes in obese white children. Arch Dis Child 2002; 86: 207–208.

    Article  CAS  Google Scholar 

  41. Lipton R, Keenan H, Onyemere KU, Freels S . Incidence and onset features of diabetes in African-American and Latino children in Chicago, 1985–1994. Diabetes Metab Res Rev 2002; 18: 135–142.

    Article  Google Scholar 

  42. Macaluso CJ, Bauer UE, Deeb LC, Malone JI, Chaudhari M, Silverstein J et al. Type 2 diabetes mellitus among Florida children and adolescents, 1994 through 1998. Public Health Rep 2002; 117: 373–379.

    Article  Google Scholar 

  43. Rami B, Schober E, Nachbauer E, Waldhor T . Type 2 diabetes is rare but not absent in children under 15 years of age in Austria. Eur J Pediatr 2003; 162: 850–852.

    Article  Google Scholar 

  44. Moore KR, Harwell TS, McDowall JM, Helgerson SD, Gohdes D . Three-year prevalence and incidence of diabetes among American Indian youth in Montana and Wyoming, 1999–2001. J Pediatr 2003; 143: 368–371.

    Article  Google Scholar 

  45. Wei JN, Sung FC, Lin CC, Lin RS, Chiang CC, Chuang LM . National surveillance for type 2 diabetes mellitus in Taiwan children. JAMA 2003; 290: 1345–1350.

    Article  CAS  Google Scholar 

  46. Grinstein G, Muzumdar R, Aponte L, Vuguin P, Saenger P, DiMartino-Nardi J . Presentation and 5-year follow-up of type 2 diabetes mellitus in African-American and Carribean-Hispanic adolescents. Horm Res 2003; 60: 121–126.

    CAS  PubMed  Google Scholar 

  47. Upchurch SL, Brosnan CA, Meininger JC, Wright DE, Campbell JA, McKay SV et al. Characteristics of 98 children and adolescents diagnosed with type 2 diabetes by their health care provider at initial presentation. Diabetes Care 2003; 26: 2209.

    Article  Google Scholar 

  48. Feltbower RG, McKinney PA, Campbell FM, Stephenson CR, Bodansky HJ . Type 2 and other forms of diabetes in 0–30 year olds: a hospital based study in Leeds, UK. Arch Dis Child 2003; 88: 676–679.

    Article  CAS  Google Scholar 

  49. Ramachandran A, Snehalatha C, Satyavani K, Sivasankari S, Vijay V . Type 2 diabetes in Asian-Indian urban children. Diabetes Care 2003; 26: 1022–1025.

    Article  Google Scholar 

  50. Wabitsch M, Hauner H, Hertrampf M, Muche R, Hay B, Mayer H et al. Type II diabetes mellitus and impaired glucose regulation in Caucasian children and adolescents with obesity living in Germany. Int J Obes Relat Metab Disord 2004; 28: 307–313.

    Article  CAS  Google Scholar 

  51. McMahon SK, Haynes A, Ratnam N, Grant MT, Carne CL, Jones TW et al. Increase in type 2 diabetes in children and adolescents in Western Australia. Med J Aust 2004; 180: 459–461.

    PubMed  Google Scholar 

  52. Ehtisham S, Hattersley AT, Dunger DB, Barratt TG . For the British Society for Paediatric Endocrinology and Diabetes Clinical Trial Group. Arch Dis Child 2004; 89: 526–529.

    Article  CAS  Google Scholar 

  53. DECODE Study Group. Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care 2003; 26: 61–69.

    Article  Google Scholar 

  54. Colditz D, Willett W, Stampfer M . Weight as a risk factor for clinical diabetes in women. Am J Epidemiology 1990; 132: 501–513.

    Article  CAS  Google Scholar 

  55. Chan J, Stampfer M, Rimm E, Willett W, Colditz D . Obesity, fat distribution and weight gain as factors for clinical diabetes in men. Diabetes Care 1994; 17: 961–969.

    Article  CAS  Google Scholar 

  56. Weedon MN, Frayling TM, Shields B, Knight B, Turner T, Metcalf BS et al. Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes 2005; 54: 576–581.

    Article  CAS  Google Scholar 

  57. Ounsted C, Ounsted M . Effect of Y chromosome on fetal growth rate. Lancet 1970; ii: 857–858.

    Article  Google Scholar 

  58. de Zegher F, Francois I, Boehmer AL, Saggese G, Muller J, Hiort O et al. Androgens and fetal growth. Horm Res 1998; 50: 243–244.

    CAS  PubMed  Google Scholar 

  59. Ehm MG, Karnoub MC, Sakul H, Gottschalk K, Holt DC, Weber JL, et al., American Diabetes Association GENNID Study Group. Genetics of NIDDM American Diabetes Association GENNID Study Group: genetics of NIDDM: genomewide search for type 2 diabetes susceptibility genes in four American populations. Am J Hum Genet 2000; 66: 1871–1881.

    Article  CAS  Google Scholar 

  60. Gravholt CH, Juul S, Naeraa RW, Hansen J . Morbidity in Turner syndrome. J Clin Epidemiol 1998; 51: 147–158.

    Article  CAS  Google Scholar 

  61. Frayling TM, Hattersley AT . The role of genetic susceptibility in the association of low birth weight with type 2 diabetes. Brit Med Bull 2001; 60: 89–101.

    Article  CAS  Google Scholar 

  62. Dunger DB, Ong KK, Huxtable SJ, Sherriff A, Woods KA, Ahmed ML et al. Association of the INS VNTR with size at birth. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Nat Genet 1998; 19: 98–100.

    Article  CAS  Google Scholar 

  63. Casteels K, Ong K, Philips D, Bendall H, Pembrey M . Mitochondrial 16189 variant, thinness at birth, and type 2 diabetes. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Lancet 1999; 353: 1499–1500.

    Article  CAS  Google Scholar 

  64. Hocher B, Slowinski T, Stolze T, Pleschka A, Neumayer HH, Halle H . Association of maternal G protein beta3 subunit 825T allele with low birthweight. Lancet 2000; 355: 1241–1242.

    Article  CAS  Google Scholar 

  65. Jacquet D, Trégouët DA, Godefroy T, Nicaud V, Chevenne D, Tiret L et al. Combined effects of genetic and environmental factors on insulin resistance associated with reduced fetal growth. Diabetes 2002; 51: 3473–3478.

    Article  Google Scholar 

  66. Arends N, Johnston L, Hokken-Koelega A, van Duijn C, de Ridder M, Savage M et al. Polymorphism in the IGF-1 gene: clinical relevance for short children born small for gestational age. J Clin Endocrinol Metab 2002; 87: 2720–2724.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkin, T., Murphy, M. The gender insulin hypothesis: why girls are born lighter than boys, and the implications for insulin resistance. Int J Obes 30, 1056–1061 (2006). https://doi.org/10.1038/sj.ijo.0803317

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803317

Keywords

Search

Quick links