Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4+ T cell-dependent mechanism

Abstract

We previously showed that genetic immunization of C57BL/6 mice with recombinant adenovirus encoding human TRP2 (Ad-hTRP2) was able to circumvent tolerance and induce cellular and humoral immune responses to murine TRP2 associated with protection against metastatic growth of B16 melanoma. In the present study we compared delivery of Ad-hTRP2 with cultured dendritic cells (DC) and direct injections of Ad-hTRP2. We show that application of Ad-hTRP2 with cultured DC enhanced protective immunity to B16 melanoma cells. Most importantly, delivery of recombinant adenovirus with DC alters the character of the immune response resulting in preferential stimulation of strong cellular immunity in the absence of significant humoral immunity to the encoded antigen. Adoptive transfer of lymphocytes from mice immunized with Ad-hTRP2-transduced DC confirmed that cellular components of the immune response were responsible for rejection of B16 melanoma. The protective efficacy of Ad-hTRP2-transduced DC clearly depended on the presence of CD4+ T helper cells. Furthermore, AD-hTRP2-transduced DC, but not direct injection of Ad-hTRP2, were effective in the presence of neutralizing anti-adenoviral antibodies. These preclinical studies demonstrate the superiority of melanoma vaccines consisting of cultured DC transduced with recombinant adenoviruses encoding melanoma antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ulmer JB, Sadoff JC, Liu MA . DNA vaccines Curr Opin Immunol 1996 8: 531–536

    Article  CAS  PubMed  Google Scholar 

  2. Restifo NP . The new vaccines: building viruses that elicit antitumor immunity Curr Opin Immunol 1996 8: 658–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tüting T, Storkus WJ, Falo LD . DNA immunization targeting the skin: molecular control of adaptive immunity J Invest Dermatol 1998 111: 183–188

    Article  PubMed  Google Scholar 

  4. Warnier G et al. Induction of a cytolytic T-cell response in mice with a recombinant adenovirus coding for tumor antigen P815A Int J Cancer 1996 7: 303–310

    Article  Google Scholar 

  5. Chen PW et al. Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen J Immunol 1996 156: 224–231

    CAS  PubMed  Google Scholar 

  6. Condon C et al. DNA-based immunization by in vivo transfection of dendritic cells Nat Med 1996 2: 1122–1128

    Article  CAS  PubMed  Google Scholar 

  7. Tüting T et al. Induction of tumor antigen-specific immunity using DNA immunization in mice Cancer Gene Ther 1999 6: 73–80

    Article  PubMed  Google Scholar 

  8. Boon T et al. Tumor antigens recognized by T lymphocytes Annu Rev Immunol 1994 12: 337–365

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg SA . Cancer vaccines based on the identification of genes encoding cancer regression antigens Immunol Today 1997 18: 175–182

    Article  CAS  PubMed  Google Scholar 

  10. Wölfel T et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes Eur J Immunol 1994 24: 759–764

    Article  PubMed  Google Scholar 

  11. Topalian SL et al. Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes J Exp Med 1996 183: 1965–1971

    Article  CAS  PubMed  Google Scholar 

  12. Wang RF et al. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes J Exp Med 1996 184: 2207–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parkhurst MR et al. Identification of a shared HLA-A *0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2) Cancer Res 1998 58: 4895–4901

    CAS  PubMed  Google Scholar 

  14. Weber LW et al. Tumor immunity and autoimmunity induced by immunization with homologous DNA J Clin Invest 1998 102: 1258–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hirschowitz EA et al. Adenovirus-mediated expression of melanoma antigen gp75 as immunotherapy for metastatic melanoma Gene Therapy 1998 5: 975–983

    Article  CAS  PubMed  Google Scholar 

  16. Overwijk WW et al. Vaccination with a recombinant vaccinia virus encoding a ‘self’ antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes Proc Natl Acad Sci USA 1999 96: 2982–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowne WB et al. Coupling and uncoupling of tumor immunity and autoimmunity J Exp Med 1999 190: 1717–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steitz J et al. Genetic immunization with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma Int J Cancer 2000 86: 89–94

    Article  CAS  PubMed  Google Scholar 

  19. Bronte V et al. Genetic vaccination with ‘self’ tyrosinase-related protein 2 causes melanoma eradication but not vitiligo Cancer Res 2000 60: 253–258

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Colella TA et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy J Exp Med 2000 191: 1221–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bloom MB et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma J Exp Med 1997 185: 453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Juillard V et al. Long-term humoral and cellular immunity induced by a single immunization with replication-defective adenovirus recombinant vector Eur J Immunol 1995 25: 3467–3472

    Article  CAS  PubMed  Google Scholar 

  23. Brossart P et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  24. Wan Y et al. Murine dendritic cells transduced with an adenoviral vector expressing a defined tumor antigen can overcome anti-adenovirus neutralizing immunity and induce effective tumor regression Int J Oncol 1999 14: 771–776

    CAS  PubMed  Google Scholar 

  25. Bronte V et al. Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine Proc Natl Acad Sci USA 1997 94: 3183–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Porgador A et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization J Exp Med 1998 188: 1075–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  28. Tüting T, DeLeo AB, Lotze MT, Storkus WJ . Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or ‘self’ antigens induce antitumor immunity in vivo Eur J Immunol 1997 27: 2702–2707

    Article  PubMed  Google Scholar 

  29. Lutz MB et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow J Immunol Methods 1999 223: 77–92

    Article  CAS  PubMed  Google Scholar 

  30. Labeur MS et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage J Immunol 1999 162: 168–175

    CAS  PubMed  Google Scholar 

  31. Kaplan JM et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens J Immunol 1999 63: 699–707

    Google Scholar 

  32. Tüting T et al. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity J Gene Med 1999 1: 400–406

    Article  PubMed  Google Scholar 

  33. Gambotto A et al. Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope Gene Therapy 2000 7: 2036–2040

    Article  CAS  PubMed  Google Scholar 

  34. Wang KC, Berczi I, Sehon AH . Effector and enhancing lymphoid cells in plasmacytoma-bearing mice. I. Methodological studies on the Winn assay Int J Cancer 1980 25: 487–492

    Article  CAS  PubMed  Google Scholar 

  35. Ludewig B et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease J Exp Med 2000 191: 795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gong J et al. Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells Proc Natl Acad Sci USA 1998 95: 6279–6283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan Y et al. Genetically modified dendritic cells prime autoreactive T cells through a pathway independent of CD40L and interleukin 12: implications for cancer vaccines Cancer Res 2000 60: 3247–3253

    CAS  PubMed  Google Scholar 

  38. Zinkernagel RM et al. Antigen localisation regulates immune responses in a dose- and time-dependent fashion: a geographical view of immune reactivity Immunol Rev 1997 156: 199–209

    CAS  PubMed  Google Scholar 

  39. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  40. Ludewig B et al. Induction of optimal anti-viral neutralizing B cell responses by dendritic cells requires transport and release of virus particles in secondary lymphoid organs Eur J Immunol 2000 30: 185–196

    Article  CAS  PubMed  Google Scholar 

  41. Timares L, Takashima A, Johnston SA . Quantitative analysis of the immunopotency of genetically transfected dendritic cells Proc Natl Acad Sci USA 1998 95: 13147–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeh HJ et al. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy J Immunol 1999 162: 989–994

    CAS  PubMed  Google Scholar 

  43. Ossendorp F et al. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors J Exp Med 1998 187: 693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ridge JP, DiRosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and T-killer cell Nature 1998 393: 474–477

    Article  CAS  PubMed  Google Scholar 

  45. Schnell S, Young JW, Houghton AN, Sadelain M . Retrovirally transduced mouse dendritic cells require CD4+ T cell help to elicit antitumor immunity: implications for the clinical use of dendritic cells J Immunol 2000 164: 1243–1250

    Article  CAS  PubMed  Google Scholar 

  46. De Veerman M et al. Retrovirally transduced bone marrow-derived dendritic cells require CD4+ T cell help to elicit protective and therapeutic antitumor immunity J Immunol 1999 162: 144–151

    CAS  PubMed  Google Scholar 

  47. Hung K et al. The central role of CD4+ T cells in the antitumor immune response J Exp Med 1998 188: 2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mumberg D et al. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma Proc Natl Acad Sci USA 1999 96: 8633–8638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qin Z, Blankenstein T . CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells Immunity 2000 12: 677–686

    Article  CAS  PubMed  Google Scholar 

  50. Irvine KR et al. Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors J Natl Cancer Inst 1997 90: 1894–1899

    Google Scholar 

  51. Siemens DR et al. Restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrx J Immunol 2001 166: 731–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB432, project A12). We thank Mrs Gärtner and Mrs Alt for excellent technical assistance. We also thank Dr von Stebut and Dr Steinbrink for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steitz, J., Brück, J., Knop, J. et al. Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4+ T cell-dependent mechanism. Gene Ther 8, 1255–1263 (2001). https://doi.org/10.1038/sj.gt.3301521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301521

Keywords

This article is cited by

Search

Quick links