Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hematopoietic stem cell gene therapy with drug resistance genes: an update

Abstract

Transfer of drug resistance genes into hematopoietic stem cells (HSCs) has promise for the treatment of a variety of inherited, that is, X-linked severe combined immune deficiency, adenosine deaminase deficiency, thalassemia, and acquired disorders, that is, breast cancer, lymphomas, brain tumors, and testicular cancer. Drug resistance genes are transferred into HSCs either for providing myeloprotection against chemotherapy-induced myelosuppression or for selecting HSCs that are concomitantly transduced with another gene for correction of an inherited disorder. In this review, we describe ongoing experimental approaches, observations from clinical trials, and safety concerns related to the drug resistance gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Abonour R, Williams DA, Einhorn L, et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med. 2000;6:652–658.

    CAS  PubMed  Google Scholar 

  2. Kume A, Hanazono Y, Mizukami H, et al. Selective expansion of transduced cells for hematopoietic stem cell gene therapy. Int J Hematol. 2002;76:299–304.

    CAS  PubMed  Google Scholar 

  3. Larochelle A, Dunbar CE . Genetic manipulation of hematopoietic stem cells. Semin Hematol. 2004;41:257–271.

    CAS  PubMed  Google Scholar 

  4. Orlic D, Girard LJ, Jordan CT, et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci USA. 1996;93:11097–11102.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Orlic D, Girard LJ, Anderson SM, et al. Amphotropic retrovirus transduction of hematopoietic stem cells. Ann NY Acad Sci. 1999;872:115–123.

    CAS  PubMed  Google Scholar 

  6. Sabatino DE, Do BQ, Pyle LC, et al. Amphotropic or gibbon ape leukemia virus retrovirus binding and transduction correlates with the level of receptor mRNA in human hematopoietic cell lines. Blood Cells Mol Dis. 1997;23:422–433.

    CAS  PubMed  Google Scholar 

  7. Cowan KH, Moscow JA, Huang H, et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res. 1999;5:1619–1628.

    CAS  PubMed  Google Scholar 

  8. Moscow JA, Huang H, Carter C, et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood. 1999;94:52–61.

    CAS  PubMed  Google Scholar 

  9. Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol. 1998;16:165–172.

    CAS  PubMed  Google Scholar 

  10. Kiem HP, Heyward S, Winkler A, et al. Gene transfer into marrow repopulating cells: comparison between amphotropic and gibbon ape leukemia virus pseudotyped retroviral vectors in a competitive repopulation assay in baboons. Blood. 1997;90:4638–4645.

    CAS  PubMed  Google Scholar 

  11. Kang EM, Hanazano Y, Frare P, et al. Persistent low-level engraftment of rhesus peripheral blood progenitor cells transduced with the fanconi anemia C gene after conditioning with low-dose irradiation. Mol Ther. 2001;3:911–919.

    CAS  PubMed  Google Scholar 

  12. Aiuti A, Ficara F, Cattaneo F, et al. Gene therapy for adenosine deaminase deficiency. Curr Opin Allergy Clin Immunol. 2003;3:461–466.

    CAS  PubMed  Google Scholar 

  13. Dunbar CE, Kohn DB, Schiffmann R, et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: in vivo detection of transduced cells without myeloablation. Hum Gene Ther. 1998;9:2629–2640.

    CAS  PubMed  Google Scholar 

  14. Traycoff CM, Orazi A, Ladd AC, et al. Proliferation-induced decline of primitive hematopoietic progenitor cell activity is coupled with an increase in apoptosis of ex vivo expanded CD34+ cells. Exp Hematol. 1998;26:53–62.

    CAS  PubMed  Google Scholar 

  15. Peters SO, Kittler EL, Ramshaw HS, et al. Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood. 1996;87:30–37.

    CAS  PubMed  Google Scholar 

  16. Peters SO, Kittler EL, Ramshaw HS, et al. Murine marrow cells expanded in culture with IL-3, IL-6, IL-11, and SCF acquire an engraftment defect in normal hosts. Exp Hematol. 1995;23:461–469.

    CAS  PubMed  Google Scholar 

  17. Mazurier F, Gan OI, McKenzie JL, et al. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood. 2004;103:545–552.

    CAS  PubMed  Google Scholar 

  18. Morris JC, Conerly M, Thomasson B, et al. Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloablative conditioning. Blood. 2004;103:492–499.

    CAS  PubMed  Google Scholar 

  19. Van Damme A, Chuah MK, Collen D, et al. Onco-retroviral and lentiviral vector-based gene therapy for hemophilia: preclinical studies. Semin Thromb Hemost. 2004;30:185–195.

    CAS  PubMed  Google Scholar 

  20. Tuschong L, Soenen SL, Blaese RM, et al. Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther. 2002;13:1605–1610.

    CAS  PubMed  Google Scholar 

  21. Riddell SR, Elliott M, Lewinsohn DA, et al. T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nat Med. 1996;2:216–223.

    CAS  PubMed  Google Scholar 

  22. Rosenzweig M, Connole M, Glickman R, et al. Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells. Blood. 2001;97:1951–1959.

    CAS  PubMed  Google Scholar 

  23. Pannell D, Ellis J . Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol. 2001;11:205–217.

    CAS  PubMed  Google Scholar 

  24. Lung HY, Meeus IS, Weinberg RS, et al. In vivo silencing of the human gamma-globin gene in murine erythroid cells following retroviral transduction. Blood Cells Mol Dis. 2000;26:613–619.

    CAS  PubMed  Google Scholar 

  25. Kalberer CP, Pawliuk R, Imren S, et al. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and age-dependent extinction of expression of human beta-globin in engrafted mice. Proc Natl Acad Sci USA. 2000;97:5411–5415.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Klug CA, Cheshier S, Weissman IL . Inactivation of a GFP retrovirus occurs at multiple levels in long-term repopulating stem cells and their differentiated progeny. Blood. 2000;96:894–901.

    CAS  PubMed  Google Scholar 

  27. Leurs C, Jansen M, Pollok KE, et al. Comparison of three retroviral vector systems for transduction of nonobese diabetic/severe combined immunodeficiency mice repopulating human CD34+ cord blood cells. Hum Gene Ther. 2003;14:509–519.

    CAS  PubMed  Google Scholar 

  28. Josephson NC, Vassilopoulos G, Trobridge GD, et al. Transduction of human NOD/SCID-repopulating cells with both lymphoid and myeloid potential by foamy virus vectors. Proc Natl Acad Sci USA. 2002;99:8295–8300.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gatlin J, Padgett A, Melkus MW, et al. Long-term engraftment of nonobese diabetic/severe combined immunodeficient mice with human CD34+ cells transduced by a self-inactivating human immunodeficiency virus type 1 vector. Hum Gene Ther. 2001;12:1079–1089.

    CAS  PubMed  Google Scholar 

  30. Haas DL, Case SS, Crooks GM, et al. Critical factors influencing stable transduction of human CD34(+) cells with HIV-1-derived lentiviral vectors. Mol Ther. 2000;2:71–80.

    CAS  PubMed  Google Scholar 

  31. Karlsson S, Ooka A, Woods NB . Development of gene therapy for blood disorders by gene transfer into haematopoietic stem cells. Haemophilia. 2002;8:255–260.

    CAS  PubMed  Google Scholar 

  32. Kimchi-Sarfaty C, Arora M, Sandalon Z, et al. High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences. Hum Gene Ther. 2003;14:167–177.

    CAS  PubMed  Google Scholar 

  33. Kimchi-Sarfaty C, Gottesman MM . SV40 pseudovirions as highly efficient vectors for gene transfer and their potential application in cancer therapy. Curr Pharm Biotechnol. 2004;5:451–458.

    CAS  PubMed  Google Scholar 

  34. Kimchi-Sarfaty C, Alexander NS, Brittain S, et al. Transduction of multiple cell types using improved conditions for gene delivery and expression of SV40 pseudovirions packaged in vitro. Biotechniques. 2004;37:270–275.

    CAS  PubMed  Google Scholar 

  35. Vassilopoulos G, Trobridge G, Josephson NC, et al. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood. 2001;98:604–609.

    CAS  PubMed  Google Scholar 

  36. Russell DW, Miller AD . Foamy virus vectors. J Virol. 1996;70:217–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Trobridge G, Vassilopoulos G, Josephson N, et al. Gene transfer with foamy virus vectors. Methods Enzymol. 2002;346:628–648.

    CAS  PubMed  Google Scholar 

  38. Barrette S, Douglas J, Orlic D, et al. Superior transduction of mouse hematopoietic stem cells with 10A1 and VSV-G pseudotyped retrovirus vectors. Mol Ther. 2000;1:330–338.

    CAS  PubMed  Google Scholar 

  39. Bunnell BA, Kluge KA, Lee-Lin SQ, et al. Transplantation of transduced nonhuman primate CD34+ cells using a gibbon ape leukemia virus vector: restricted expression of the gibbon ape leukemia virus receptor to a subset of CD34+ cells. Gene Therapy. 1999;6:48–56.

    CAS  PubMed  Google Scholar 

  40. Gallardo HF, Tan C, Ory D, et al. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood. 1997;90:952–957.

    CAS  PubMed  Google Scholar 

  41. Gladow M, Becker C, Blankenstein T, et al. MLV-10A1 retrovirus pseudotype efficiently transduces primary human CD4+ T lymphocytes. J Gene Med. 2000;2:409–415.

    CAS  PubMed  Google Scholar 

  42. Kelly PF, Carrington J, Nathwani A, et al. RD114-pseudotyped oncoretroviral vectors. Biological and physical properties. Ann NY Acad Sci. 2001;938:262–276.

    CAS  PubMed  Google Scholar 

  43. Movassagh M, Desmyter C, Baillou C, et al. High-level gene transfer to cord blood progenitors using gibbon ape leukemia virus pseudotype retroviral vectors and an improved clinically applicable protocol. Hum Gene Ther. 1998;9:225–234.

    CAS  PubMed  Google Scholar 

  44. Pedersen L, Johann SV, van Zeijl M, et al. Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus. J Virol. 1995;69:2401–2405.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Relander T, Karlsson S, Richter J . Oncoretroviral gene transfer to NOD/SCID repopulating cells using three different viral envelopes. J Gene Med. 2002;4:122–132.

    PubMed  Google Scholar 

  46. Sandrin V, Boson B, Salmon P, et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood. 2002;100:823–832.

    CAS  PubMed  Google Scholar 

  47. Stitz J, Buchholz CJ, Engelstadter M, et al. Lentiviral vectors pseudotyped with envelope glycoproteins derived from gibbon ape leukemia virus and murine leukemia virus 10A1. Virology. 2000;273:16–20.

    CAS  PubMed  Google Scholar 

  48. Kiem HP, Andrews RG, Morris J, et al. Improved gene transfer into baboon marrow repopulating cells using recombinant human fibronectin fragment CH-296 in combination with interleukin-6, stem cell factor, FLT-3 ligand, and megakaryocyte growth and development factor. Blood. 1998;92:1878–1886.

    CAS  PubMed  Google Scholar 

  49. Hanenberg H, Hashino K, Konishi H, et al. Optimization of fibronectin-assisted retroviral gene transfer into human CD34+ hematopoietic cells. Hum Gene Ther. 1997;8:2193–2206.

    CAS  PubMed  Google Scholar 

  50. Trarbach T, Greifenberg S, Bardenheuer W, et al. Optimized retroviral transduction protocol for human progenitor cells utilizing fibronectin fragments. Cytotherapy. 2000;2:429–438.

    CAS  PubMed  Google Scholar 

  51. Lamana ML, Segovia JC, Guenechea G, et al. Systematic analysis of clinically applicable conditions leading to a high efficiency of transduction and transgene expression in human T cells. J Gene Med. 2001;3:32–41.

    CAS  PubMed  Google Scholar 

  52. Hennemann B, Conneally E, Pawliuk R, et al. Optimization of retroviral-mediated gene transfer to human NOD/SCID mouse repopulating cord blood cells through a systematic analysis of protocol variables. Exp Hematol. 1999;27:817–825.

    CAS  PubMed  Google Scholar 

  53. Moritz T, Patel VP, Williams DA . Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J Clin Invest. 1994;93:1451–1457.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Donahue RE, Sorrentino BP, Hawley RG, et al. Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in nonhuman primate CD34+ cells. Mol Ther. 2001;3:359–367.

    CAS  PubMed  Google Scholar 

  55. Moritz T, Dutt P, Xiao X, et al. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood. 1996;88:855–862.

    CAS  PubMed  Google Scholar 

  56. Murray L, Luens K, Tushinski R, et al. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, Flt3, and Kit ligands and RetroNectin culture. Hum Gene Ther. 1999;10:1743–1752.

    CAS  PubMed  Google Scholar 

  57. Haylock DN, Horsfall MJ, Dowse TL, et al. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of FLT3 ligand. Blood. 1997;90:2260–2272.

    CAS  PubMed  Google Scholar 

  58. Kim HJ, Okamoto Y, Ito M, et al. Evaluation of a cytokine combination including thrombopoietin for improved transduction of a retroviral gene into G-CSF-mobilized CD34+ human blood cells. Stem Cells. 1997;15:347–352.

    CAS  PubMed  Google Scholar 

  59. van der Loo JC, Liu BL, Goldman AI, et al. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector. Hum Gene Ther. 2002;13:1317–1330.

    CAS  PubMed  Google Scholar 

  60. Bahnson AB, Dunigan JT, Baysal BE, et al. Centrifugal enhancement of retroviral mediated gene transfer. J Virol Methods. 1995;54:131–143.

    CAS  PubMed  Google Scholar 

  61. Sanyal A, Schuening FG . Increased gene transfer into human cord blood cells by centrifugation-enhanced transduction in fibronectin fragment-coated tubes. Hum Gene Ther. 1999;10:2859–2868.

    CAS  PubMed  Google Scholar 

  62. Campain JA, Terrell KL, Tomczak JA, et al. Comparison of retroviral-mediated gene transfer into cultured human CD34+ hematopoietic progenitor cells derived from peripheral blood, bone marrow, and fetal umbilical cord blood. Biol Blood Marrow Transplant. 1997;3:273–281.

    CAS  PubMed  Google Scholar 

  63. Zielske SP, Gerson SL . Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol Ther. 2002;5:381–387.

    CAS  PubMed  Google Scholar 

  64. Zhou P, Lee J, Moore P, et al. High-efficiency gene transfer into rhesus macaque primary T lymphocytes by combining 32 degrees C centrifugation and CH-296-coated plates: effect of gene transfer protocol on T cell homing receptor expression. Hum Gene Ther. 2001;12:1843–1855.

    CAS  PubMed  Google Scholar 

  65. Relander T, Brun A, Hawley RG, et al. Retroviral transduction of human CD34+ cells on fibronectin fragment CH-296 is inhibited by high concentrations of vector containing medium. J Gene Med. 2001;3:207–218.

    CAS  PubMed  Google Scholar 

  66. Hanazono Y, Nagashima T, Takatoku M, et al. In vivo selective expansion of gene-modified hematopoietic cells in a nonhuman primate model. Gene Therapy. 2002;9:1055–1064.

    CAS  PubMed  Google Scholar 

  67. Wu T, Kim HJ, Sellers SE, et al. Prolonged high-level detection of retrovirally marked hematopoietic cells in nonhuman primates after transduction of CD34+ progenitors using clinically feasible methods. Mol Ther. 2000;1:285–293.

    CAS  PubMed  Google Scholar 

  68. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–419.

    CAS  PubMed  Google Scholar 

  69. Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348:255–256.

    PubMed  Google Scholar 

  70. Couzin J, Kaiser J . Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science. 2005;307:1028.

    CAS  PubMed  Google Scholar 

  71. Nyberg K, Carter BJ, Chen T, et al. Workshop on long-term follow-up of participants in human gene transfer research. Mol Ther. 2004;10:976–980.

    CAS  PubMed  Google Scholar 

  72. Bertino JR . “Turning the tables” — making normal marrow resistant to chemotherapy. J Natl Cancer Inst. 1990;82:1234–1235.

    CAS  PubMed  Google Scholar 

  73. Allay JA, Galipeau J, Blakley RL, et al. Retroviral vectors containing a variant dihydrofolate reductase gene for drug protection and in vivo selection of hematopoietic cells. Stem Cells. 1998;16 (Suppl. 1):223–233.

    PubMed  Google Scholar 

  74. Banerjee D, Mayer-Kuckuk P, Capiaux G, et al. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta. 2002;1587:164–173.

    CAS  PubMed  Google Scholar 

  75. Baum C, Margison GP, Eckert HG, et al. Gene transfer to augment the therapeutic index of anticancer chemotherapy. Gene Therapy. 1996;3:1–3.

    CAS  PubMed  Google Scholar 

  76. Bertino JR, Zhao SC, Mineishi S, et al. Use of variants of dihydrofolate reductase in gene transfer to produce resistance to methotrexate and trimetrexate. Prog Exp Tumor Res. 1999;36:82–94.

    CAS  PubMed  Google Scholar 

  77. Chinnasamy N, Rafferty JA, Hickson I, et al. Chemoprotective gene transfer II: multilineage in vivo protection of haemopoiesis against the effects of an antitumour agent by expression of a mutant human O6-alkylguanine-DNA alkyltransferase. Gene Therapy. 1998;5:842–847.

    CAS  PubMed  Google Scholar 

  78. Sugimoto Y, Gottesman MM, Pastan I, et al. Construction of MDR1 vectors for gene therapy. Methods Enzymol. 1998;292:523–537.

    CAS  PubMed  Google Scholar 

  79. Nemunaitis J, Cunningham C . Emerging new therapies for chemotherapy-resistant cancer using adenoviral vectors. Drug Resist Updat. 2002;5:34–46.

    CAS  PubMed  Google Scholar 

  80. Yanase K, Sugimoto Y, Andoh T, et al. Retroviral expression of a mutant (Gly-533) human DNA topoisomerase I cDNA confers a dominant form of camptothecin resistance. Int J Cancer. 1999;81:134–140.

    CAS  PubMed  Google Scholar 

  81. Moritz T, Williams DA . Marrow protection — transduction of hematopoietic cells with drug resistance genes. Cytotherapy. 2001;3:67–84.

    CAS  PubMed  Google Scholar 

  82. Licht T, Goldenberg SK, Vieira WD, et al. Drug selection of MDR1-transduced hematopoietic cells ex vivo increases transgene expression and chemoresistance in reconstituted bone marrow in mice. Gene Therapy. 2000;7:348–358.

    CAS  PubMed  Google Scholar 

  83. Kobayashi H, Takemura Y, Miyachi H . Novel approaches to reversing anti-cancer drug resistance using gene-specific therapeutics. Hum Cell. 2001;14:172–184.

    CAS  PubMed  Google Scholar 

  84. Koc ON, Allay JA, Lee K, et al. Transfer of drug resistance genes into hematopoietic progenitors to improve chemotherapy tolerance. Semin Oncol. 1996;23:46–65.

    CAS  PubMed  Google Scholar 

  85. Baum C, Peinert S, Carpinteiro A, et al. Genetic modification of haematopoietic cells for combined resistance to podophyllotoxins, other agents covered by MDR1-mediated efflux activity and nitrosoureas. Bone Marrow Transplant. 2000;25 (Suppl. 2):S71–S74.

    PubMed  Google Scholar 

  86. D'Hondt V, Symann M, Machiels JP . Chemoprotection and selection by chemotherapy of multidrug resistance-associated protein-1 (MRP1) transduced cells. Curr Gene Ther. 2001;1:359–366.

    CAS  PubMed  Google Scholar 

  87. Gerson SL . Drug resistance gene transfer: stem cell protection and therapeutic efficacy. Exp Hematol. 2000;28:1315–1324.

    CAS  PubMed  Google Scholar 

  88. Milsom MD, Fairbairn LJ . Protection and selection for gene therapy in the hematopoietic system. J Gene Med. 2004;6:133–146.

    CAS  PubMed  Google Scholar 

  89. Flasshove M, Moritz T, Bardenheuer W, et al. Hematoprotection by transfer of drug-resistance genes. Acta Haematol. 2003;110:93–106.

    CAS  PubMed  Google Scholar 

  90. Vollweiler JL, Zielske SP, Reese JS, et al. Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant. 2003;32:1–7.

    CAS  PubMed  Google Scholar 

  91. Laufs S, Buss EC, Zeller WJ, et al. Transfer of drug resistance genes in hematopoietic progenitors for chemoprotection: is it still an option? Drug Resist Updat. 2003;6:57–69.

    CAS  PubMed  Google Scholar 

  92. Gerson SL . Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol. 2002;20:2388–2399.

    CAS  PubMed  Google Scholar 

  93. Banerjee D, Bertino JR . Myeloprotection with drug-resistance genes. Lancet Oncol. 2002;3:154–158.

    CAS  PubMed  Google Scholar 

  94. Kohn DB . Gene therapy using hematopoietic stem cells. Curr Opin Mol Ther. 1999;1:437–442.

    CAS  PubMed  Google Scholar 

  95. Kipps TJ . Genetic engineering strategies for hematologic malignancies. Genet Eng (NY). 2000;22:197–207.

    CAS  Google Scholar 

  96. Mineishi S . Augmentation of methotrexate resistance with coexpression of metabolically related genes. Prog Exp Tumor Res. 1999;36:95–106.

    CAS  PubMed  Google Scholar 

  97. Roskrow MA, Gansbacher B . Recent developments in gene therapy for oncology and hematology. Crit Rev Oncol Hematol. 1998;28:139–151.

    CAS  PubMed  Google Scholar 

  98. Devereux S, Corney C, Macdonald C, et al. Feasibility of multidrug resistance (MDR-1) gene transfer in patients undergoing high-dose therapy and peripheral blood stem cell transplantation for lymphoma. Gene Therapy. 1998;5:403–408.

    CAS  PubMed  Google Scholar 

  99. Sellers SE, Tisdale JF, Agricola BA, et al. The effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells. Blood. 2001;97:1888–1891.

    CAS  PubMed  Google Scholar 

  100. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science. 1992;257:99–103.

    CAS  PubMed  Google Scholar 

  101. Omori F, Juopperi T, Chan CK, et al. Retroviral-mediated transfer and expression of the multidrug resistance protein 1 gene (MRP1) protect human hematopoietic cells from antineoplastic drugs. J Hematother Stem Cell Res. 1999;8:503–514.

    CAS  PubMed  Google Scholar 

  102. Machiels JP, Govaerts AS, Guillaume T, et al. Retrovirus-mediated gene transfer of the human multidrug resistance-associated protein into hematopoietic cells protects mice from chemotherapy-induced leukopenia. Hum Gene Ther. 1999;10:801–811.

    CAS  PubMed  Google Scholar 

  103. Mineishi S, Nakahara S, Takebe N, et al. Co-expression of the herpes simplex virus thymidine kinase gene potentiates methotrexate resistance conferred by transfer of a mutated dihydrofolate reductase gene. Gene Therapy. 1997;4:570–576.

    CAS  PubMed  Google Scholar 

  104. Takebe N, Zhao SC, Adhikari D, et al. Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene. Mol Ther. 2001;3:88–96.

    CAS  PubMed  Google Scholar 

  105. Beausejour CM, Le NL, Letourneau S, et al. Coexpression of cytidine deaminase and mutant dihydrofolate reductase by a bicistronic retroviral vector confers resistance to cytosine arabinoside and methotrexate. Hum Gene Ther. 1998;9:2537–2544.

    CAS  PubMed  Google Scholar 

  106. Wang J, Chen Z, Xia X, et al. A bicistronic retroviral vector to introduce drug resistance genes into human umbilical cord blood CD34+ cells to improve combination chemotherapy tolerance. Chin Med J (Engl). 2001;114:25–29.

    CAS  Google Scholar 

  107. Suzuki M, Sugimoto Y, Tsukahara S, et al. Retroviral coexpression of two different types of drug resistance genes to protect normal cells from combination chemotherapy. Clin Cancer Res. 1997;3:947–954.

    CAS  PubMed  Google Scholar 

  108. Suzuki M, Sugimoto Y, Tsuruo T . Efficient protection of cells from the genotoxicity of nitrosoureas by the retrovirus-mediated transfer of human O6-methylguanine-DNA methyltransferase using bicistronic vectors with human multidrug resistance gene 1. Mutat Res. 1998;401:133–141.

    CAS  PubMed  Google Scholar 

  109. Belzile JP, Karatzas A, Shiu HY, et al. Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase. Cancer Gene Ther. 2003;10:637–646.

    CAS  PubMed  Google Scholar 

  110. Capiaux GM, Budak-Alpdogan T, Takebe N, et al. Retroviral transduction of a mutant dihydrofolate reductase-thymidylate synthase fusion gene into murine marrow cells confers resistance to both methotrexate and 5-fluorouracil. Hum Gene Ther. 2003;14:435–446.

    CAS  PubMed  Google Scholar 

  111. Rappa G, Lorico A, Hildinger M, et al. Novel bicistronic retroviral vector expressing gamma-glutamylcysteine synthetase and the multidrug resistance protein 1 (MRP1) protects cells from MRP1-effluxed drugs and alkylating agents. Hum Gene Ther. 2001;12:1785–1796.

    CAS  PubMed  Google Scholar 

  112. Richard E, Geronimi F, Lalanne M, et al. A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines. J Gene Med. 2003;5:737–747.

    CAS  PubMed  Google Scholar 

  113. Sauerbrey A, McPherson JP, Zhao SC, et al. Expression of a novel double-mutant dihydrofolate reductase-cytidine deaminase fusion gene confers resistance to both methotrexate and cytosine arabinoside. Hum Gene Ther. 1999;10:2495–2504.

    CAS  PubMed  Google Scholar 

  114. Sugimoto Y, Sato S, Tsukahara S, et al. Coexpression of a multidrug resistance gene (MDR1) and herpes simplex virus thymidine kinase gene in a bicistronic retroviral vector Ha-MDR-IRES-TK allows selective killing of MDR1-transduced human tumors transplanted in nude mice. Cancer Gene Ther. 1997;4:51–58.

    CAS  PubMed  Google Scholar 

  115. Pedrazzoli P, Ferrante P, Kulekci A, et al. Autologous hematopoietic stem cell transplantation for breast cancer in Europe: critical evaluation of data from the European Group for Blood and Marrow Transplantation (EBMT) Registry 1990–1999. Bone Marrow Transplant. 2003;32:489–494.

    CAS  PubMed  Google Scholar 

  116. Pedrazzoli P, Tarenzi E, Tullio C, et al. High dose chemotherapy and hematopoietic progenitor cell transplantation for breast cancer. J Chemother. 2004;16 (Suppl. 4):108–111.

    CAS  PubMed  Google Scholar 

  117. Jelinek J, Rafferty JA, Cmejla R, et al. A novel dual function retrovirus expressing multidrug resistance 1 and O6-alkylguanine-DNA-alkyltransferase for engineering resistance of haemopoietic progenitor cells to multiple chemotherapeutic agents. Gene Therapy. 1999;6:1489–1493.

    CAS  PubMed  Google Scholar 

  118. Hirose M, Hosoi E, Hamano S, et al. Multidrug resistance in hematological malignancy. J Med Invest. 2003;50:126–135.

    PubMed  Google Scholar 

  119. Leonard GD, Fojo T, Bates SE . The role of ABC transporters in clinical practice. Oncologist. 2003;8:411–424.

    CAS  PubMed  Google Scholar 

  120. Robert J . Multidrug resistance in oncology: diagnostic and therapeutic approaches. Eur J Clin Invest. 1999;29:536–545.

    CAS  PubMed  Google Scholar 

  121. Mickisch GH, Aksentijevich I, Schoenlein PV, et al. Transplantation of bone marrow cells from transgenic mice expressing the human MDR1 gene results in long-term protection against the myelosuppressive effect of chemotherapy in mice. Blood. 1992;79:1087–1093.

    CAS  PubMed  Google Scholar 

  122. Galski H, Sullivan M, Willingham MC, et al. Expression of a human multidrug resistance cDNA (MDR1) in the bone marrow of transgenic mice: resistance to daunomycin-induced leukopenia. Mol Cell Biol. 1989;9:4357–4363.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bunting KD, Galipeau J, Topham D, et al. Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood. 1998;92:2269–2279.

    CAS  PubMed  Google Scholar 

  124. Bunting KD, Zhou S, Lu T, et al. Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood. 2000;96:902–909.

    CAS  PubMed  Google Scholar 

  125. Licht T, Aran JM, Goldenberg SK, et al. Retroviral transfer of human MDR1 gene to hematopoietic cells: effects of drug selection and of transcript splicing on expression of encoded P-glycoprotein. Hum Gene Ther. 1999;10:2173–2185.

    CAS  PubMed  Google Scholar 

  126. Zaboikin MM, Schuening FG . Poor expression of MDR1 transgene in HeLa cells by bicistronic Moloney murine leukemia virus-based vector. Hum Gene Ther. 1998;9:2263–2275.

    CAS  PubMed  Google Scholar 

  127. Cmejlova J, Hildinger M, Cmejla R, et al. Impact of splice-site mutations of the human MDR1 cDNA on its stability and expression following retroviral gene transfer. Gene Therapy. 2003;10:1061–1065.

    CAS  PubMed  Google Scholar 

  128. Knipper R, Kuehlcke K, Schiedlmeier B, et al. Improved post-transcriptional processing of an MDR1 retrovirus elevates expression of multidrug resistance in primary human hematopoietic cells. Gene Therapy. 2001;8:239–246.

    CAS  PubMed  Google Scholar 

  129. Schiedlmeier B, Kuhlcke K, Eckert HG, et al. Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice. Blood. 2000;95:1237–1248.

    CAS  PubMed  Google Scholar 

  130. Schiedlmeier B, Schilz AJ, Kuhlcke K, et al. Multidrug resistance 1 gene transfer can confer chemoprotection to human peripheral blood progenitor cells engrafted in immunodeficient mice. Hum Gene Ther. 2002;13:233–242.

    CAS  PubMed  Google Scholar 

  131. Schilz AJ, Schiedlmeier B, Kuhlcke K, et al. MDR1 gene expression in NOD/SCID repopulating cells after retroviral gene transfer under clinically relevant conditions. Mol Ther. 2000;2:609–618.

    CAS  PubMed  Google Scholar 

  132. http://www.clinicaltrials.gov/ct/show/NCT00003567?order=1.

  133. Davis BM, Roth JC, Liu L, et al. Characterization of the P140K, PVP(138-140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy. Hum Gene Ther. 1999;10:2769–2778.

    CAS  PubMed  Google Scholar 

  134. Davis BM, Koc ON, Gerson SL . Limiting numbers of G156A O(6)-methylguanine-DNA methyltransferase-transduced marrow progenitors repopulate nonmyeloablated mice after drug selection. Blood. 2000;95:3078–3084.

    CAS  PubMed  Google Scholar 

  135. Davis BM, Reese JS, Koc ON, et al. Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1, 3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res. 1997;57:5093–5099.

    CAS  PubMed  Google Scholar 

  136. Davis BM, Reese JS, Lingas K, et al. Drug selection of mutant methylguanine methyltransferase from different oncoretroviral backbones results in multilineage hematopoietic transgene expression in primary and secondary recipients. J Hematother Stem Cell Res. 2003;12:375–387.

    CAS  PubMed  Google Scholar 

  137. Zielske SP, Lingas KT, Li Y, et al. Limited lentiviral transgene expression with increasing copy number in an MGMT selection model: lack of copy number selection by drug treatment. Mol Ther. 2004;9:923–931.

    CAS  PubMed  Google Scholar 

  138. Zielske SP, Reese JS, Lingas KT, et al. In vivo selection of MGMT(P140K) lentivirus-transduced human NOD/SCID repopulating cells without pretransplant irradiation conditioning. J Clin Invest. 2003;112:1561–1570.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Koc ON, Reese JS, Davis BM, et al. DeltaMGMT-transduced bone marrow infusion increases tolerance to O6-benzylguanine and 1, 3-bis(2-chloroethyl)-1-nitrosourea and allows intensive therapy of 1, 3-bis(2-chloroethyl)-1-nitrosourea-resistant human colon cancer xenografts. Hum Gene Ther. 1999;10:1021–1030.

    CAS  PubMed  Google Scholar 

  140. Lijinsky W, Kovatch RM, Singer SS . Carcinogenesis in F-344 rats induced by nitrosohydroxyalkyl-chloroethylureas. J Cancer Res Clin Oncol. 1986;112:221–228.

    CAS  PubMed  Google Scholar 

  141. Greene MH, Boice Jr JD, Strike TA . Carmustine as a cause of acute nonlymphocytic leukemia. N Engl J Med. 1985;313:579.

    CAS  PubMed  Google Scholar 

  142. Durando X, Lemaire JJ, Tortochaux J, et al. High-dose BCNU followed by autologous hematopoietic stem cell transplantation in supratentorial high-grade malignant gliomas: a retrospective analysis of 114 patients. Bone Marrow Transplant. 2003;31:559–564.

    CAS  PubMed  Google Scholar 

  143. Mbidde EK, Selby PJ, Perren TJ, et al. High dose BCNU chemotherapy with autologous bone marrow transplantation and full dose radiotherapy for grade IV astrocytoma. Br J Cancer. 1988;58:779–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fernandez-Hidalgo OA, Vanaclocha V, Vieitez JM, et al. High-dose BCNU and autologous progenitor cell transplantation given with intra-arterial cisplatinum and simultaneous radiotherapy in the treatment of high-grade gliomas: benefit for selected patients. Bone Marrow Transplant. 1996;18:143–149.

    CAS  PubMed  Google Scholar 

  145. Li MX, Banerjee D, Zhao SC, et al. Development of a retroviral construct containing a human mutated dihydrofolate reductase cDNA for hematopoietic stem cell transduction. Blood. 1994;83:3403–3408.

    CAS  PubMed  Google Scholar 

  146. James RI, May C, Vagt MD, et al. Transgenic mice expressing the tyr22 variant of murine DHFR: protection of transgenic marrow transplant recipients from lethal doses of methotrexate. Exp Hematol. 1997;25:1286–1295.

    CAS  PubMed  Google Scholar 

  147. May C, Gunther R, McIvor RS . Protection of mice from lethal doses of methotrexate by transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase activity. Blood. 1995;86:2439–2448.

    CAS  PubMed  Google Scholar 

  148. Williams DA, Hsieh K, DeSilva A, et al. Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate-resistant bone marrow. J Exp Med. 1987;166:210–218.

    CAS  PubMed  Google Scholar 

  149. May C, James RI, Gunther R, et al. Methotrexate dose-escalation studies in transgenic mice and marrow transplant recipients expressing drug-resistant dihydrofolate reductase activity. J Pharmacol Exp Ther. 1996;278:1444–1451.

    CAS  PubMed  Google Scholar 

  150. James RI, Warlick CA, Diers MD, et al. Mild preconditioning and low-level engraftment confer methotrexate resistance in mice transplanted with marrow expressing drug-resistant dihydrofolate reductase activity. Blood. 2000;96:1334–1341.

    CAS  PubMed  Google Scholar 

  151. James R, May C, Diers M, et al. Methotrexate resistance conferred by transplantation of drug-resistant transgenic marrow cells fractionated bycounterflow elutriation. Bone Marrow Transplant. 1999;24:815–821.

    CAS  PubMed  Google Scholar 

  152. Isola LM, Gordon JW . Systemic resistance to methotrexate in transgenic mice carrying a mutant dihydrofolate reductase gene. Proc Natl Acad Sci USA. 1986;83:9621–9625.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sweeney CL, Frandsen JL, Verfaillie CM, et al. Trimetrexate inhibits progression of the murine 32Dp210 model of chronic myeloid leukemia in animals expressing drug-resistant dihydrofolate reductase. Cancer Res. 2003;63:1304–1310.

    CAS  PubMed  Google Scholar 

  154. Ercikan-Abali EA, Mineishi S, Tong Y, et al. Active site-directed double mutants of dihydrofolate reductase. Cancer Res. 1996;56:4142–4145.

    CAS  PubMed  Google Scholar 

  155. Zhao SC, Banerjee D, Mineishi S, et al. Post-transplant methotrexate administration leads to improved curability of mice bearing a mammary tumor transplanted with marrow transduced with a mutant human dihydrofolate reductase cDNA. Hum Gene Ther. 1997;8:903–909.

    CAS  PubMed  Google Scholar 

  156. Momparler RL, Eliopoulos N, Bovenzi V, et al. Resistance to cytosine arabinoside by retrovirally mediated gene transfer of human cytidine deaminase into murine fibroblast and hematopoietic cells. Cancer Gene Ther. 1996;3:331–338.

    CAS  PubMed  Google Scholar 

  157. Cadman E, Eiferman F . Mechanism of synergistic cell killing when methotrexate precedes cytosine arabinoside: study of L1210 and human leukemic cells. J Clin Invest. 1979;64:788–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Hoovis ML, Chu MY . Enhancement of the antiproliferative action of 1-β-D-arabinofuranosylcytosine by methotrexate in murine leukemic cells (L5178Y). Cancer Res. 1973;33:521–525.

    CAS  PubMed  Google Scholar 

  159. Roberts D, Peck C, Hilliard S, et al. Methotrexate-induced changes in the levels of 1-beta-D-arabinofuranosylcytosine triphosphate in L1210 cells. Cancer Res. 1979;39:4048–4054.

    CAS  PubMed  Google Scholar 

  160. Burke PJ, Vaughan WP, Karp JE, et al. The correlation of maximal drug dose, tumor recruitment, and sequence timing with therapeutic advantage: schedule-dependent toxicity of cytosine arabinoside. Med Pediatr Oncol. 1982;10 (Suppl. 1):201–208.

    PubMed  Google Scholar 

  161. Burke PJ, Karp JE, Vaughan WP, et al. Recruitment of quiescent tumor by humoral stimulatory activity: requirements for successful chemotherapy. Blood Cells. 1982;8:519–533.

    CAS  PubMed  Google Scholar 

  162. Budak-Alpdogan T, Alpdogan O, Banerjee D, et al. Methotrexate and cytarabine inhibit progression of human lymphoma in NOD/SCID mice carrying a mutant dihydrofolate reductase and cytidine deaminase fusion gene. Mol Ther. 2004;10:574–584.

    CAS  PubMed  Google Scholar 

  163. Moskowitz CH, Bertino JR, Glassman JR, et al. Ifosfamide, carboplatin, and etoposide: a highly effective cytoreduction and peripheral-blood progenitor-cell mobilization regimen for transplant-eligible patients with non-Hodgkin's lymphoma. J Clin Oncol. 1999;17:3776–3785.

    CAS  PubMed  Google Scholar 

  164. Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2004;103:3684–3688.

    CAS  PubMed  Google Scholar 

  165. Hamlin PA, Zelenetz AD, Kewalramani T, et al. Age-adjusted International Prognostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. Blood. 2003;102:1989–1996.

    CAS  PubMed  Google Scholar 

  166. Petersen FB, Appelbaum FR, Hill R, et al. Autologous marrow transplantation for malignant lymphoma: a report of 101 cases from Seattle. J Clin Oncol. 1990;8:638–647.

    CAS  PubMed  Google Scholar 

  167. Vaishampayan U, Karanes C, Du W, et al. Outcome of relapsed non-Hodgkin's lymphoma patients after allogeneic and autologous transplantation. Cancer Invest. 2002;20:303–310.

    PubMed  Google Scholar 

  168. Kewalramani T, Nimer SD, Zelenetz AD, et al. Progressive disease following autologous transplantation in patients with chemosensitive relapsed or primary refractory Hodgkin's disease or aggressive non-Hodgkin's lymphoma. Bone Marrow Transplant. 2003;32:673–679.

    CAS  PubMed  Google Scholar 

  169. Buchler T, Hermosilla M, Ferra C, et al. Outcome and toxicity of salvage treatment on patients relapsing after autologous hematopoietic stem cell transplantation — experience from a single center. Hematology. 2003;8:145–150.

    PubMed  Google Scholar 

  170. Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med. 1993;328:1002–1006.

    CAS  PubMed  Google Scholar 

  171. Khouri IF, Romaguera J, Kantarjian H, et al. Hyper-CVAD and high-dose methotrexate/cytarabine followed by stem-cell transplantation: an active regimen for aggressive mantle-cell lymphoma. J Clin Oncol. 1998;16:3803–3809.

    CAS  PubMed  Google Scholar 

  172. Pollok KE, van Der Loo JC, Cooper RJ, et al. Differential transduction efficiency of SCID-repopulating cells derived from umbilical cord blood and granulocyte colony-stimulating factor-mobilized peripheral blood. Hum Gene Ther. 2001;12:2095–2108.

    CAS  PubMed  Google Scholar 

  173. Stamatoullas A, Fruchart C, Bastit D, et al. Ifosfamide, etoposide, cytarabine, and methotrexate as salvage chemotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma. Cancer. 1996;77:2302–2307.

    CAS  PubMed  Google Scholar 

  174. Plantier-Colcher I, Dupriez B, Simon M, et al. The VIM3–AraC regimen followed by autologous stem cell transplantation in refractory or relapsing aggressive non-Hodgkin's lymphoma. A prospective study of 71 consecutive cases. Leukemia. 1999;13:282–288.

    CAS  PubMed  Google Scholar 

  175. Allay JA, Persons DA, Galipeau J, et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nat Med. 1998;4:1136–1143.

    CAS  PubMed  Google Scholar 

  176. Persons DA, Allay JA, Bonifacino A, et al. Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood. 2004;103:796–803.

    CAS  PubMed  Google Scholar 

  177. Parkman R, Weinberg K, Crooks G, et al. Gene therapy for adenosine deaminase deficiency. Annu Rev Med. 2000;51:33–47.

    CAS  PubMed  Google Scholar 

  178. Kohn DB . Adenosine deaminase gene therapy protocol revisited. Mol Ther. 2002;5:96–97.

    CAS  PubMed  Google Scholar 

  179. Malech HL, Maples PB, Whiting-Theobald N, et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci USA. 1997;94:12133–12138.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Malech HL . Progress in gene therapy for chronic granulomatous disease. J Infect Dis. 1999;179 (Suppl. 2):S318–S325.

    CAS  PubMed  Google Scholar 

  181. Kohn DB . Gene therapy for genetic haematological disorders and immunodeficiencies. J Intern Med. 2001;249:379–390.

    CAS  PubMed  Google Scholar 

  182. Dunbar C, Kohn D . Retroviral mediated transfer of the cDNA for human glucocerebrosidase into hematopoietic stem cells of patients with Gaucher disease. A phase I study. Hum Gene Ther. 1996;7:231–253.

    CAS  PubMed  Google Scholar 

  183. Liu JM, Kim S, Read EJ, et al. Engraftment of hematopoietic progenitor cells transduced with the Fanconi anemia group C gene (FANCC). Hum Gene Ther. 1999;10:2337–2346.

    CAS  PubMed  Google Scholar 

  184. Engel BC, Kohn DB, Podsakoff GM . Update on gene therapy of inherited immune deficiencies. Curr Opin Mol Ther. 2003;5:503–507.

    CAS  PubMed  Google Scholar 

  185. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288:669–672.

    CAS  PubMed  Google Scholar 

  186. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med. 2002;346:1185–1193.

    CAS  PubMed  Google Scholar 

  187. Hacein-Bey-Abina S, Fischer A, Cavazzana-Calvo M . Gene therapy of X-linked severe combined immunodeficiency. Int J Hematol. 2002;76:295–298.

    CAS  PubMed  Google Scholar 

  188. Naldini L . In vivo gene delivery by lentiviral vectors. Thromb Haemost. 1999;82:552–554.

    CAS  PubMed  Google Scholar 

  189. Logan AC, Lutzko C, Kohn DB . Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr Opin Biotechnol. 2002;13:429–436.

    CAS  PubMed  Google Scholar 

  190. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72:9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Galimi F, Noll M, Kanazawa Y, et al. Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood. 2002;100:2732–2736.

    CAS  PubMed  Google Scholar 

  192. Malech HL, Choi U, Brenner S . Progress toward effective gene therapy for chronic granulomatous disease. Jpn J Infect Dis. 2004;57:S27–S28.

    PubMed  Google Scholar 

  193. Brenner S, Whiting-Theobald NL, Linton GF, et al. Concentrated RD114-pseudotyped MFGS-gp91pHOX vector achieves high levels of functional correction of the chronic granulomatous disease oxidase defect in NOD/SCID/beta-microglobulin−/− repopulating mobilized human peripheral blood CD34+ cells. Blood. 2003;102:2789–2797.

    CAS  PubMed  Google Scholar 

  194. Kootstra NA, Verma IM . Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol. 2003;43:413–439.

    CAS  PubMed  Google Scholar 

  195. Harrison DE, Stone M, Astle CM . Effects of transplantation on the primitive immunohematopoietic stem cell. J Exp Med. 1990;172:431–437.

    CAS  PubMed  Google Scholar 

  196. Sugimoto Y, Tsukahara S, Sato S, et al. Drug-selected co-expression of P-glycoprotein and gp91 in vivo from an MDR1-bicistronic retrovirus vector Ha-MDR-IRES-gp91. J Gene Med. 2003;5:366–376.

    CAS  PubMed  Google Scholar 

  197. Zhou Y, Aran J, Gottesman MM, et al. Co-expression of human adenosine deaminase and multidrug resistance using a bicistronic retroviral vector. Hum Gene Ther. 1998;9:287–293.

    CAS  PubMed  Google Scholar 

  198. Aran JM, Gottesman MM, Pastan I . Construction and characterization of bicistronic retroviral vectors encoding the multidrug transporter and beta-galactosidase or green fluorescent protein. Cancer Gene Ther. 1998;5:195–206.

    CAS  PubMed  Google Scholar 

  199. Licht T, Haskins M, Henthorn P, et al. Drug selection with paclitaxel restores expression of linked IL-2 receptor gamma-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc Natl Acad Sci USA. 2002;99:3123–3128.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Licht T, Peschel C . Restoration of transgene expression in hematopoietic cells with drug-selectable marker genes. Curr Gene Ther. 2002;2:227–234.

    CAS  PubMed  Google Scholar 

  201. Bowman JE, Reese JS, Lingas KT, et al. Myeloablation is not required to select and maintain expression of the drug-resistance gene, mutant MGMT, in primary and secondary recipients. Mol Ther. 2003;8:42–50.

    CAS  PubMed  Google Scholar 

  202. Persons DA, Allay ER, Sawai N, et al. Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood. 2003;102:506–513.

    CAS  PubMed  Google Scholar 

  203. Neff T, Beard BC, Peterson LJ, et al. Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood. 2005;105:997–1002.

    CAS  PubMed  Google Scholar 

  204. Sorrentino BP, Allay JA, Blakley RL . In vivo selection of hematopoietic stem cells transduced with DHFR-expressing retroviral vectors. Prog Exp Tumor Res. 1999;36:143–161.

    CAS  PubMed  Google Scholar 

  205. Havenga MJ, Werner AB, Valerio D, et al. Methotrexate selectable retroviral vectors for Gaucher disease. Gene Therapy. 1998;5:1379–1388.

    CAS  PubMed  Google Scholar 

  206. Havenga M, Valerio D, Hoogerbrugge P, et al. In vivo methotrexate selection of murine hemopoietic cells transduced with a retroviral vector for Gaucher disease. Gene Therapy. 1999;6:1661–1669.

    CAS  PubMed  Google Scholar 

  207. Sawai N, Persons DA, Zhou S, et al. Reduction in hematopoietic stem cell numbers with in vivo drug selection can be partially abrogated by HOXB4 gene expression. Mol Ther. 2003;8:376–384.

    CAS  PubMed  Google Scholar 

  208. Ezoe S, Matsumura I, Satoh Y, et al. Cell cycle regulation in hematopoietic stem/progenitor cells. Cell Cycle. 2004;3:314–318.

    CAS  PubMed  Google Scholar 

  209. Sauvageau G, Thorsteinsdottir U, Eaves CJ, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 1995;9:1753–1765.

    CAS  PubMed  Google Scholar 

  210. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell. 2002;109:39–45.

    CAS  PubMed  Google Scholar 

  211. Krosl J, Austin P, Beslu N, et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med. 2003;9:1428–1432.

    CAS  PubMed  Google Scholar 

  212. Nusse R, van Ooyen A, Cox D, et al. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature. 1984;307:131–136.

    CAS  PubMed  Google Scholar 

  213. Mikkers H, Allen J, Knipscheer P, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet. 2002;32:153–159.

    CAS  PubMed  Google Scholar 

  214. Suzuki T, Shen H, Akagi K, et al. New genes involved in cancer identified by retroviral tagging. Nat Genet. 2002;32:166–174.

    CAS  PubMed  Google Scholar 

  215. Kim R, Trubetskoy A, Suzuki T, et al. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J Virol. 2003;77:2056–2062.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Laufs S, Nagy KZ, Giordano F, et al. Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther. 2004;10:874–881.

    CAS  PubMed  Google Scholar 

  217. Wu X, Li Y, Crise B, et al. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003;300:1749–1751.

    CAS  PubMed  Google Scholar 

  218. Hematti P, Hong BK, Ferguson C, et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. 2004;2:e423.

    PubMed  PubMed Central  Google Scholar 

  219. Friedmann T . The future for gene therapy — a reevaluation. Ann NY Acad Sci. 1976;265:141–152.

    CAS  PubMed  Google Scholar 

  220. Kohn DB, Sadelain M, Dunbar C, et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther. 2003;8:180–187.

    CAS  PubMed  Google Scholar 

  221. Cavazzana-Calvo M, Hacein-Bey S, Yates F, et al. Gene therapy of severe combined immunodeficiencies. J Gene Med. 2001;3:201–206.

    CAS  PubMed  Google Scholar 

  222. Dave UP, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science. 2004;303:333.

    PubMed  Google Scholar 

  223. Kiem HP, Sellers S, Thomasson B, et al. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther. 2004;9:389–395.

    CAS  PubMed  Google Scholar 

  224. Kustikova OS, Wahlers A, Kuhlcke K, et al. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood. 2003;102:3934–3937.

    CAS  PubMed  Google Scholar 

  225. Schmidt M, Carbonaro DA, Speckmann C, et al. Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med. 2003;9:463–468.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R Bertino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budak-Alpdogan, T., Banerjee, D. & Bertino, J. Hematopoietic stem cell gene therapy with drug resistance genes: an update. Cancer Gene Ther 12, 849–863 (2005). https://doi.org/10.1038/sj.cgt.7700866

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700866

Keywords

This article is cited by

Search

Quick links