Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

Cytomegalovirus (CMV) infections and CMV-specific cellular immune reconstitution following reduced intensity conditioning allogeneic stem cell transplantation with Alemtuzumab

Summary:

We studied the incidence and recurrence of Cytomegalovirus (CMV) infection and reactivation in 38 recipients of Alemtuzumab reduced intensity conditioning-stem cell transplantation, and used CMV-HLA tetramer studies to discover if these events correlated with recovery of circulating CMV-specific CD8+ T cells (cytotoxic T lymphocyte (CTLs)). The cumulative incidence of CMV infection was 60% at 1 year (95% CI, 45–78%) with a median reactivation time of 24 days (range 5–95 days). All patients with CMV reactivation received Ganciclovir or Foscarnet, and only one developed CMV disease. More strikingly, only 8/21 patients had relapse of CMV antigenemia. Tetramer analysis in 13 patients showed that 11 reconstituted CMV CTLs (7/11 by day 30 and 10/11 by day 90). The development of CMV infection was accompanied by a >5-fold rise of CMV CTLs. Recurrence of CMV infection occurred only in the patients who failed to generate a CTL response to the virus. Hence, recipients of SCT using Alemtuzumab-RIC are initially profoundly immunosuppressed and have a high incidence of early CMV reactivation. However, in the majority of patients, infection is transient, and antiviral T cell reconstitution is rapid. Monitoring with CMV-specific CTLs may help identify the subset of patients at risk from recurrent infection or disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Carella AM, Champlin R, Slavin S et al. Mini-allografts: ongoing trials in humans. Bone Marrow Transplant 2000; 25: 345–350.

    Article  CAS  PubMed  Google Scholar 

  2. Feinstein L, Sandmaier B, Maloney D et al. Nonmyeloablative hematopoietic stem cell transplantation. Replacing high-dose cytotoxic therapy by the graft-versus-tumor effect. Ann N Y Acad Sci 2001; 938: 328–337.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman TM, Varadi G, Hopely DD et al. Nonmyeloablative conditioning allows for more rapid T cell repertoire reconstitution following allogeneic matched unrelated bone marrow transplantation compared to myeloablative approaches. Biol Blood Marrow Transplant 2001; 7: 656–664.

    Article  CAS  PubMed  Google Scholar 

  4. Morecki S, Gelfand Y, Nagler A et al. Immune reconstitution following allogeneic stem cell transplantation in recipients conditioned by low intensity vs myeloablative regimen. Bone Marrow Transplant 2001; 28: 243–249.

    Article  CAS  PubMed  Google Scholar 

  5. Bornhauser M, Thiede C, Platzbecker U et al. Dose-reduced conditioning and allogeneic hematopoietic stem cell transplantation from unrelated donors in 42 patients. Clin Cancer Res 2001; 7: 2254–2262.

    CAS  PubMed  Google Scholar 

  6. Maris MB, Niederwieser D, Sandmaier BM et al. HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative conditioning for patients with hematologic malignancies. Blood 2003; 102: 2021–2030.

    Article  CAS  PubMed  Google Scholar 

  7. Nagler A, Aker M, Or R et al. Low-intensity conditioning is sufficient to ensure engraftment in matched unrelated bone marrow transplantation. Exp Hematol 2001; 29: 362–370.

    Article  CAS  PubMed  Google Scholar 

  8. Wong R, Giralt SA, Martin T et al. Reduced-intensity conditioning for unrelated donor hematopoietic stem cell transplantation as treatment for myeloid malignancies in patients older than 55 years. Blood 2003; 102: 3052–3059.

    Article  CAS  PubMed  Google Scholar 

  9. Boeckh M . Current antiviral strategies for controlling cytomegalovirus in hematopoietic stem cell transplant recipients: prevention and therapy. Transpl Infect Dis 1999; 1: 165–178.

    Article  CAS  PubMed  Google Scholar 

  10. Krance RA, Kuehnle I, Rill DR et al. Hematopoietic and immunomodulatory effects of lytic CD45 monoclonal antibodies in patients with hematologic malignancy. Biol Blood Marrow Transplant 2003; 9: 273–281.

    Article  CAS  PubMed  Google Scholar 

  11. Nitsche A, Steuer N, Schmidt C et al. Different real-time PCR formats compared for the quantitative detection of human cytomegalovirus DNA. Clin Chem 1999; 45: 1932–1937.

    CAS  PubMed  Google Scholar 

  12. Hale G, Zhang MJ, Bunjes D et al. Improving the outcome of bone marrow transplantation by using CD52 monoclonal antibodies to prevent graft-versus-host disease and graft rejection. Blood 1998; 92: 4581–4590.

    CAS  PubMed  Google Scholar 

  13. Hale G, Jacobs P, Wood L et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 2000; 26: 69–76.

    Article  CAS  PubMed  Google Scholar 

  14. Klangsinsirikul P, Carter GI, Byrne JL et al. Campath-1G causes rapid depletion of circulating host dendritic cells (DCs) before allogeneic transplantation but does not delay donor DC reconstitution. Blood 2002; 99: 2586–2591.

    Article  CAS  PubMed  Google Scholar 

  15. Bindon CI, Hale G, Clark M, Waldmann H . Therapeutic potential of monoclonal antibodies to the leukocyte-common antigen. Synergy and interference in complement-mediated lysis. Transplantation 1985; 40: 538–544.

    Article  CAS  PubMed  Google Scholar 

  16. Wulf GG, Luo KL, Goodell MA, Brenner MK . Anti-CD45-mediated cytoreduction to facilitate allogeneic stem cell transplantation. Blood 2003; 101: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  17. Morris EC, Rebello P, Thomson KJ et al. Pharmacokinetics of alemtuzumab used for in vivo and in vitro T-cell depletion in allogeneic transplantations: relevance for early adoptive immunotherapy and infectious complications. Blood 2003; 102: 404–406.

    Article  CAS  PubMed  Google Scholar 

  18. DelleKarth G, Laczika K, Scholten C et al. Clearance of PCR-detectable lymphoma cells from the peripheral blood, but not bone marrow after therapy with Campath-1H. Am J Hematol 1995; 50: 146–147.

    Article  CAS  PubMed  Google Scholar 

  19. Weinblatt ME, Maddison PJ, Bulpitt KJ et al. Campath-1H, a humanized monoclonal antibody, in refractory rheumatoid arthritis: an intravenous dose-escalation study. Arthritis Rheum 1995; 38: 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  20. Matteson EL, Yocum DE, St Clair EW et al. Treatment of active refractory rheumatoid arthritis with humanized monoclonal antibody Campath-1H administered by daily subcutaneous injection. Arthritis Rheum 1995; 38: 1187–1193.

    Article  CAS  PubMed  Google Scholar 

  21. Brett S, Baxter G, Cooper H et al. Repopulation of blood lymphocyte sub-populations in rheumatoid arthritis patients treated with the depleting humanized monoclonal antibody, Campath-1H. Immunology 1996; 88: 13–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keating MJ, Flinn I, Jain V et al. Therapeutic role of alemtuzumab (CAMPATH-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99: 3554–3561.

    Article  CAS  PubMed  Google Scholar 

  23. Martino R, Caballero MD, Canals C et al. Reduced-intensity conditioning reduces the risk of severe infections after allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2001; 28: 341–347.

    Article  CAS  PubMed  Google Scholar 

  24. Junghanss C, Boeckh M, Carter RA et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 2002; 99: 1978–1985.

    Article  CAS  PubMed  Google Scholar 

  25. Chakrabarti S, Mackinnon S, Chopra R et al. High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath – 1H in delaying immune reconstitution. Blood 2002; 99: 4357–4363.

    Article  CAS  PubMed  Google Scholar 

  26. Cwynarski K, Ainsworth J, Cobbold M et al. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001; 97: 1232–1240.

    Article  CAS  PubMed  Google Scholar 

  27. Davison GM, Novitzky N, Kline A et al. Immune reconstitution after allogeneic bone marrow transplantation depleted of T cells. Transplantation 2000; 69: 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  28. Riddell SR, Watanabe KS, Goodrich JM et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Amy Strelzer Manasevit Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Lamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamba, R., Carrum, G., Myers, G. et al. Cytomegalovirus (CMV) infections and CMV-specific cellular immune reconstitution following reduced intensity conditioning allogeneic stem cell transplantation with Alemtuzumab. Bone Marrow Transplant 36, 797–802 (2005). https://doi.org/10.1038/sj.bmt.1705121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705121

Keywords

This article is cited by

Search

Quick links