Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obstetric and vascular antiphospholipid syndrome: same antibodies but different diseases?

Abstract

Recurrent thrombosis and miscarriages are the main clinical manifestations of antiphospholipid syndrome (APS). Although most patients display both clinical signs, some patients can have isolated vascular or obstetric variants. Emerging data raise the question of whether obstetric and vascular APS are the same or different diseases. An important difference between the two conditions is that a thrombophilic state is a common feature in vascular APS, whereas clot occlusions of the decidual spiral arteries are seldom observed in obstetric APS, and infarctions are found in only one-third of APS placentae. Conversely, inflammation, which is undetectable in vascular APS, is frequently observed in the placentae of patients with obstetric APS and has been documented in the placentae of pregnant mice with fetal loss mediated by antiphospholipid antibodies. Attempts to identify different antibodies or epitopes responsible for the two clinical manifestations of APS have so far been unsuccessful. Possible mechanisms exist that might explain the development of the two clinical presentations, including the tissue distribution and expression level of the main target antigen of antiphospholipid antibodies, β2 glycoprotein I (β2GPI). The identification of the factors that promote the onset of either obstetric or vascular APS has important diagnostic and therapeutic implications.

Key points

  • There are two main clinical variants of antiphospholipid syndrome (APS): vascular and obstetric APS.

  • Although most patients with APS have both vascular and obstetric manifestations, isolated vascular or obstetric variants exist.

  • Thrombosis represents the main clinical manifestation of vascular APS, whereas obstetric APS is characterized by pregnancy morbidity including miscarriage, unexplained fetal death and premature birth.

  • Defective placentation is the major cause of pregnancy morbidity in APS; non-thrombotic mechanisms might be more important than placental infarction in the pathogenesis of obstetric APS.

  • β2 glycoprotein I (β2GPI)-dependent antiphospholipid antibodies are currently considered the main pathogenic autoantibodies in APS.

  • Whether the same antibodies can induce both vascular thrombosis and pregnancy morbidity is still unclear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential pathogenic mechanisms mediated by β2GPI-dependent aPL in the placenta.
Fig. 2: Potential pathogenic mechanisms mediated by β2GPI-dependent aPL in blood vessels.

Similar content being viewed by others

References

  1. Cervera, R. Antiphospholipid syndrome. Thromb. Res. 151 (Suppl. 1), 43–47 (2017).

    Article  CAS  Google Scholar 

  2. Ruiz-Irastorza, G., Crowther, M., Branch, W. & Khamashta, M. A. Antiphospholipid syndrome. Lancet 376, 1498–1509 (2010).

    Article  PubMed  CAS  Google Scholar 

  3. Cervera, R. et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann. Rheum. Dis. 74, 1011–1018 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Taraborelli, M. et al. Longterm outcome of patients with primary antiphospholipid syndrome: a retrospective multicenter study. J. Rheumatol. 44, 1165–1172 (2017).

    Article  PubMed  Google Scholar 

  5. Alijotas-Reig, J. et al. The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): a survey of 247 consecutive cases. Autoimmun. Rev. 14, 387–395 (2015).

    Article  PubMed  Google Scholar 

  6. De Wolf, F. et al. Decidual vasculopathy and extensive placental infarction in a patient with repeated thromboembolic accidents, recurrent fetal loss, and a lupus anticoagulant. Am. J. Obstet. Gynecol. 142, 829–834 (1982).

    Article  PubMed  Google Scholar 

  7. Viall, C. A. & Chamley, L. W. Histopathology in the placentae of women with antiphospholipid antibodies: a systematic review of the literature. Autoimmun. Rev. 14, 446–471 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. D’Ippolito, S. et al. Obstetric antiphospholipid syndrome: a recent classification for an old defined disorder. Autoimmun. Rev. 13, 901–908 (2014).

    Article  PubMed  Google Scholar 

  9. Abrahams, V. M., Chamley, L. W. & Salmon, J. E. Antiphospholipid syndrome and pregnancy: pathogenesis to translation. Arthritis Rheumatol. 69, 1710–1721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Girardi, G., Redecha, P. & Salmon, J. E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat. Med. 10, 1222–1226 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. Quao, Z. C. et al. Low molecular weight heparin and aspirin exacerbate human endometrial endothelial cell responses to antiphospholipid antibodies. Am. J. Reprod. Immunol. https://doi.org/10.1111/aji.12785 (2018).

    Article  PubMed  Google Scholar 

  12. Chighizola, C. B., Shoenfeld, Y. & Meroni, P. L. Therapy for antiphospholipid miscarriages: throwing the baby out with the bathwater? Am. J. Reprod. Immunol. https://doi.org/10.1111/aji.12792 (2017).

    Article  PubMed  Google Scholar 

  13. Berman, J., Girardi, G. & Salmon, J. E. TNF-α is a critical effector and a target for therapy in antiphospholipid antibody-induced pregnancy loss. J. Immunol. 174, 485–490 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med. 203, 2165–2175 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bramham, K., Thomas, M., Nelson-Piercy, C., Khamashta, M. & Hunt, B. J. First-trimester low-dose prednisolone in refractory antiphospholipid antibody-related pregnancy loss. Blood 117, 6948–6951 (2011).

    Article  PubMed  CAS  Google Scholar 

  16. Ruffatti, A. et al. Treatment strategies and pregnancy outcomes in antiphospholipid syndrome patients with thrombosis and triple antiphospholipid positivity. A European multicentre retrospective study. Thromb. Haemost. 112, 727–735 (2014).

    Article  PubMed  Google Scholar 

  17. Mekinian, A. et al. Refractory obstetrical antiphospholipid syndrome: features, treatment and outcome in a European multicenter retrospective study. Autoimmun. Rev. 16, 730–734 (2017).

    Article  PubMed  Google Scholar 

  18. Van Horn, J. T., Craven, C., Ward, K., Branch, D. W. & Silver, R. M. Histologic features of placentas and abortion specimens from women with antiphospholipid and antiphospholipid-like syndromes. Placenta 25, 642–648 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. De la Torre, Y. M. et al. Anti-phospholipid induced murine fetal loss: novel protective effect of a peptide targeting the β2 glycoprotein I phospholipid-binding site: implications for human fetal loss. J. Autoimmun. 38, J209–J215 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Chighizola, C. B., Raschi, E., Borghi, M. O. & Meroni, P. L. Update on the pathogenesis and treatment of the antiphospholipid syndrome. Curr. Opin. Rheumatol. 27, 476–482 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. Meroni, P. L., Borghi, M. O., Raschi, E. & Tedesco, F. Pathogenesis of antiphospholipid syndrome: understanding the antibodies. Nat. Rev. Rheumatol. 7, 330–339 (2011).

    Article  PubMed  CAS  Google Scholar 

  23. Meroni, P. L., Chighizola, C. B., Rovelli, F. & Gerosa, M. Antiphospholipid syndrome in 2014: more clinical manifestations, novel pathogenic players and emerging biomarkers. Arthritis Res. Ther. 16, 209 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lambrianides, A. et al. Effects of polyclonal IgG derived from patients with different clinical types of the antiphospholipid syndrome on monocyte signaling pathways. J. Immunol. 184, 6622–6628 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Poulton, K. et al. Purified IgG from patients with obstetric but not IgG from non-obstetric antiphospholipid syndrome inhibit trophoblast invasion. Am. J. Reprod. Immunol. 73, 390–401 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. Cuadrado, M. J. et al. Vascular endothelial growth factor expression in monocytes from patients with primary antiphospholipid syndrome. J. Thromb. Haemost. 4, 2461–2469 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. López-Pedrera, C. et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-κB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 54, 301–311 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. López-Pedrera, C. et al. Differential expression of protease-activated receptors in monocytes from patients with primary antiphospholipid syndrome. Arthritis Rheum. 62, 869–877 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Agostinis, C. et al. A non-complement-fixing antibody to β2 glycoprotein I as a novel therapy for antiphospholipid syndrome. Blood 123, 3478–3487 (2014).

    Article  PubMed  CAS  Google Scholar 

  30. Meroni, P. L. Anti-β2 glycoprotein I epitope specificity: from experimental models to diagnostic tools. Lupus 25, 905–910 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Radin, M., Cecchi, I., Roccatello, D., Meroni, P. L. & Sciascia, S. Prevalence and thrombotic risk assessment of anti-β2 glycoprotein i domain i antibodies: a systematic review. Semin. Thromb. Hemost. https://doi.org/10.1055/s-0037-1603936 (2017).

    Article  PubMed  Google Scholar 

  32. Ostertag, M. V., Liu, X., Henderson, V. & Pierangeli, S. S. A peptide that mimics the Vth region of β2-glycoprotein I reverses antiphospholipid-mediated thrombosis in mice. Lupus 15, 358–365 (2006).

    Article  PubMed  CAS  Google Scholar 

  33. Iwaniec, T., Kaczor, M. P., Celinska-Löwenhoff, M., Polanski, S. & Musiał, J. Clinical significance of anti-domain 1 β2-glycoprotein I antibodies in antiphospholipid syndrome. Thromb. Res. 153, 90–94 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. De Craemer, A. S., Musial, J. & Devreese, K. M. Role of anti-domain 1-β2 glycoprotein I. antibodies in the diagnosis & risk stratification of antiphospholipid syndrome. J. Thromb. Haemost. 14, 1779–1787 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Pengo, V. et al. APS - Diagnostics and challenges for the future. Autoimmun Rev. 15, 1031–1033 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Andreoli, L. et al. Anti-β2-glycoprotein I IgG antibodies from 1-year-old healthy children born to mothers with systemic autoimmune diseases preferentially target domain 4/5: might it be the reason for their ‘innocent’ profile? Ann. Rheum. Dis. 70, 380–383 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Andreoli, L. et al. Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against β2-glycoprotein i domain 1 and domain 4/5: ratio of anti-domain 1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome. Arthritis Rheum. 67, 2196–2204 (2015).

    Article  CAS  Google Scholar 

  38. Chighizola, C. B. et al. Beyond thrombosis: Anti-β2GPI domain 1 antibodies identify late pregnancy morbidity in anti-phospholipid syndrome. J. Autoimmun. 90, 76–83 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Vreede, A. P., Bockensted, P. L. & Knight, J. S. Antiphospholipid syndrome: an update for clinicians and scientists. Curr. Opin. Rheumatol. 29, 458–466 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Agostinis, C. et al. In vivo distribution of β2 glycoprotein I under various pathophysiologic conditions. Blood 118, 4231–4238 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Meroni, P. L. et al. Complement activation in antiphospholipid syndrome and its inhibition to prevent rethrombosis after arterial surgery. Blood 127, 365–367 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Fischetti, F. et al. Thrombus formation induced by antibodies to β2-glycoprotein I is complement dependent and requires a priming factor. Blood 106, 2340–2346 (2005).

    Article  PubMed  CAS  Google Scholar 

  43. Shoenfeld, Y. et al. Infectious origin of the antiphospholipid syndrome. Ann. Rheum. Dis. 65, 2–6 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pengo, V. et al. Incidence of a first thromboembolic event in asymptomatic carriers of high-risk antiphospholipid antibody profile: a multicenter prospective study. Blood 118, 4714–4718 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Sciascia, S., Amigo, M. C., Roccatello, D. & Khamashta, M. Diagnosing antiphospholipid syndrome: ‘extra-criteria’ manifestations and technical advances. Nat. Rev. Rheumatol. 13, 548–560 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Zuily, S. et al. Validity of the global anti-phospholipid syndrome score to predict thrombosis: a prospective multicentre cohort study. Rheumatology 54, 2071–2075 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Sciascia, S. & Bertolaccini, M. L. Thrombotic risk assessment in APS: the Global APS Score (GAPSS). Lupus 23, 1286–1287 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Sciascia, S. et al. The global anti-phospholipid syndrome score in primary APS. Rheumatology 54, 134–138 (2015).

    Article  PubMed  CAS  Google Scholar 

  49. Otomo, K. et al. Efficacy of the antiphospholipid score for the diagnosis of antiphospholipid syndrome and its predictive value for thrombotic events. Arthritis Rheum. 64, 504–512 (2012).

    Article  PubMed  CAS  Google Scholar 

  50. Mekinian, A. et al. Outcomes and treatment of obstetrical antiphospholipid syndrome in women with low antiphospholipid antibody levels. J. Reprod. Immunol. 94, 222–226 (2012).

    Article  PubMed  Google Scholar 

  51. Ofer-Shiber, S. & Molad, Y. Frequency of vascular and pregnancy morbidity in patients with low versus moderate-to-high titres of antiphospholipid antibodies. Blood Coagul. Fibrinolysis 26, 261–266 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Gardiner, C., Hills, J., Machin, S. J. & Cohen, H. Diagnosis of antiphospholipid syndrome in routine clinical practice. Lupus 22, 18–25 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ruffatti, A. et al. Influence of different IgG anticardiolipin antibody cut-off values on antiphospholipid syndrome classification. J. Thromb. Haemost. 6, 1693–1696 (2008).

    Article  PubMed  CAS  Google Scholar 

  54. Chighizola et al. The risk of obstetric complications and the effects of treatment in women with low titer and medium-high titer anti-phospholipid antibodies (abstract 1074). Arthritis Rheumatol. 68, S10 (2016).

    Google Scholar 

  55. Chighizola, C. B. et al. The treatment of anti-phospholipid syndrome: a comprehensive clinical approach. J. Autoimmun. 90, 1–27 (2018).

    Article  PubMed  CAS  Google Scholar 

  56. de Groot, P. G. & Urbanus, R. T. Antiphospholipid syndrome-not a non-inflammatory disease. Semin. Thromb. Hemost. 41, 607–614 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Ioannou, Y. et al. Naturally occurring free thiols within β2-glycoprotein I in vivo: nitrosylation, redox modification by endothelial cells, and regulation of oxidative stress-induced cell injury. Blood 116, 1961–1970 (2010).

    Article  PubMed  CAS  Google Scholar 

  58. Passam, F. H. et al. β2 glycoprotein I is a substrate of thiol oxidoreductases. Blood 116, 1995–1997 (2010).

    Article  PubMed  CAS  Google Scholar 

  59. Ioannou, Y. et al. Novel assays of thrombogenic pathogenicity in the antiphospholipid syndrome based on the detection of molecular oxidative modification of the major autoantigen β2-glycoprotein I. Arthritis Rheum. 63, 2774–2782 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Giannakopoulos, B. & Krilis, S. A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med 368, 1033–1044 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Xie, H. et al. Anti-β(2)GPI/β(2)GPI induced TF and TNFα expression in monocytes involving both TLR4/MyD88 and TLR4/TRIF signaling pathways. Mol. Immunol. 53, 246–254 (2013).

    Article  PubMed  CAS  Google Scholar 

  62. Pierangeli, S. S. et al. Antiphospholipid antibodies and the antiphospholipid syndrome: pathogenic mechanisms. Semin. Thromb. Hemost. 34, 236–250 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. Cugno, M. et al. Patients with antiphospholipid syndrome display endothelial perturbation. J. Autoimmun. 34, 105–110 (2010).

    Article  PubMed  CAS  Google Scholar 

  64. Knight, J. S. et al. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight 2, e93897 (2017).

    Article  PubMed Central  Google Scholar 

  65. Erkan, D. et al. A prospective open-label pilot study of fluvastatin on proinflammatory and prothrombotic biomarkers in antiphospholipid antibody positive patients. Ann. Rheum. Dis. 73, 1176–1180 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Reyes, E. & Alarcon-Segovia, D. in The Antiphospholipid Syndrome II (eds Asherson, R. A., Cervera, R., Piette, J. C. & Shoenfeld, Y.) 131–136 (Elsevier, 2002).

  67. Chighizola, C. B., Raimondo, M. G. & Meroni, P. L. Does APS impact women’s fertility? Curr. Rheumatol. Rep. 19, 33 (2017).

    Article  PubMed  Google Scholar 

  68. Oikonomopoulou, K., Ricklin, D., Ward, P. A. & Lambris, J. D. Interactions between coagulation and complement—their role in inflammation. Semin. Immunopathol. 34, 151–165 (2012).

    Article  PubMed  CAS  Google Scholar 

  69. Carrera-Marin, A. et al. C6 knock-out mice are protected from thrombophilia mediated by antiphospholipid antibodies. Lupus 21, 1497–1505 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Fredi, M. et al. A multicenter prospective evaluation of the risk profile in pregnant patients with persistent positivity for antiphospholipid antibodies (APL). Ann. Rheum. Dis. 74, 575 (2015).

    Google Scholar 

  71. Lazzaroni, M. G. et al. Risk factors for adverse pregnancy outcome in antiphospholipid antibodies carriers: results from a multicenter italian cohort over 20 years of experience. Ann. Rheum. Dis. 76, 70 (2017).

    Google Scholar 

Download references

Acknowledgements

The work of P.L.M. and F.T. is supported by funding from the Ricerca Corrente Istituto Auxologico Italiano.

Author information

Authors and Affiliations

Authors

Contributions

P.D. researched data for the article. All authors wrote the article and reviewed and/or edited the article before submission. P.L.M., M.O.B., C.G., C.B.C. and F.T. provided substantial contributions to discussions of the content.

Corresponding author

Correspondence to Pier Luigi Meroni.

Ethics declarations

Competing interests

P.L.M. declares that he has had consultancies with AbbVie, INOVA diagnostics and Pfizer. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pregnancy morbidity

One or more unexplained deaths of a morphologically normal fetus at or beyond the tenth week of gestation; one or more premature births of a morphologically normal neonate before the thirty-fourth week of gestation because of eclampsia, severe pre-eclampsia or placental insufficiency; or three or more unexplained consecutive spontaneous abortions (miscarriages) before the tenth week of gestation.

Placentation

The formation, type and structure or arrangement of the placenta.

Trophoblasts

Cells that form the outer layer of a blastocyst, which provide the embryo with nutrients and later develop into a large part of the placenta; these cells proliferate and differentiate into two cell layers: cytotrophoblasts and syncytiotrophoblasts.

Syncytiotrophoblasts

Epithelial cells that make up a continuous, thick layer that covers the embryonic placental villi and are in direct contact with maternal blood; this layer secretes human chorionic gonadotropin hormone in order to maintain progesterone secretion and sustain a pregnancy.

Extravillous trophoblasts

Cells that are a result of differentiation of cytotrophoblasts at the tip of placental villi; extravillous trophoblasts invade the uterine spiral arteries, initially forming plugs that partially or fully occlude the lumens of spiral arteries, and later transform the spiral arteries into large-bore, non-vasoactive vessels that maximize maternal blood supply to the placenta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meroni, P.L., Borghi, M.O., Grossi, C. et al. Obstetric and vascular antiphospholipid syndrome: same antibodies but different diseases?. Nat Rev Rheumatol 14, 433–440 (2018). https://doi.org/10.1038/s41584-018-0032-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0032-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing